Ziplists had a bug that was discovered while investigating a different
issue, resulting in a corrupted ziplist representation, and a likely
segmentation foult and/or data corruption of the last element of the
ziplist, once the ziplist is accessed again.
The bug happens when a specific set of insertions / deletions is
performed so that an entry is encoded to have a "prevlen" field (the
length of the previous entry) of 5 bytes but with a count that could be
encoded in a "prevlen" field of a since byte. This could happen when the
"cascading update" process called by ziplistInsert()/ziplistDelete() in
certain contitious forces the prevlen to be bigger than necessary in
order to avoid too much data moving around.
Once such an entry is generated, inserting a very small entry
immediately before it will result in a resizing of the ziplist for a
count smaller than the current ziplist length (which is a violation,
inserting code expects the ziplist to get bigger actually). So an FF
byte is inserted in a misplaced position. Moreover a realloc() is
performed with a count smaller than the ziplist current length so the
final bytes could be trashed as well.
SECURITY IMPLICATIONS:
Currently it looks like an attacker can only crash a Redis server by
providing specifically choosen commands. However a FF byte is written
and there are other memory operations that depend on a wrong count, so
even if it is not immediately apparent how to mount an attack in order
to execute code remotely, it is not impossible at all that this could be
done. Attacks always get better... and we did not spent enough time in
order to think how to exploit this issue, but security researchers
or malicious attackers could.
This header file is for libs, like ziplist.c, that we want to leave
almost separted from the core. The panic() calls will be easy to delete
in order to use such files outside, but the debugging info we gain are
very valuable compared to simple assertions where it is not possible to
print debugging info.
This is of great interest because allows us to print debugging
informations that could be of useful when debugging, like in the
following example:
serverPanic("Unexpected encoding for object %d, %d",
obj->type, obj->encoding);
Don't go over 80 cols. Start with captial letter, capital letter afer
point, end comment with a point and so forth. No actual code behavior
touched at all.
There were two cases outlined in issue #3512 and PR #3551 where
the Geo API returned unexpected results: empty strings where NULL
replies were expected, or a single null reply where an array was
expected. This violates the Redis principle that Redis replies for
existing keys or elements should be indistinguishable.
This is technically an API breakage so will be merged only into 4.0 and
specified in the changelog in the list of breaking compatibilities, even
if it is not very likely that actual code will be affected, hopefully,
since with the past behavior basically there was to acconut for *both*
the possibilities, and the new behavior is always one of the two, but
in a consistent way.
You can still force the logo in the normal logs.
For motivations, check issue #3112. For me the reason is that actually
the logo is nice to have in interactive sessions, but inside the logs
kinda loses its usefulness, but for the ability of users to recognize
restarts easily: for this reason the new startup sequence shows a one
liner ASCII "wave" so that there is still a bit of visual clue.
Startup logging was modified in order to log events in more obvious
ways, and to log more events. Also certain important informations are
now more easy to parse/grep since they are printed in field=value style.
The option --always-show-logo in redis.conf was added, defaulting to no.
This commit also contains other changes in order to conform the code to
the Redis core style, specifically 80 chars max per line, smart
conditionals in the same line:
if (that) do_this();
The new algorithm provides the same speed with a smaller error for
cardinalities in the range 0-100k. Before switching, the new and old
algorithm behavior was studied in details in the context of
issue #3677. You can find a few graphs and motivations there.
Otherwise for small cardinalities the algorithm will output something
like, for example, 4.99 for a candinality of 5, that will be converted
to 4 producing a huge error.
The commit improves ziplistRepr() and adds a new debugging subcommand so
that we can trigger the dump directly from the Redis API.
This command capability was used while investigating issue #3684.
After the fix for #3673 the ttl var is always initialized inside the
loop itself, so the early initialization is not needed.
Variables declaration also moved to a more local scope.
BACKGROUND AND USE CASEj
Redis slaves are normally write only, however the supprot a "writable"
mode which is very handy when scaling reads on slaves, that actually
need write operations in order to access data. For instance imagine
having slaves replicating certain Sets keys from the master. When
accessing the data on the slave, we want to peform intersections between
such Sets values. However we don't want to intersect each time: to cache
the intersection for some time often is a good idea.
To do so, it is possible to setup a slave as a writable slave, and
perform the intersection on the slave side, perhaps setting a TTL on the
resulting key so that it will expire after some time.
THE BUG
Problem: in order to have a consistent replication, expiring of keys in
Redis replication is up to the master, that synthesize DEL operations to
send in the replication stream. However slaves logically expire keys
by hiding them from read attempts from clients so that if the master did
not promptly sent a DEL, the client still see logically expired keys
as non existing.
Because slaves don't actively expire keys by actually evicting them but
just masking from the POV of read operations, if a key is created in a
writable slave, and an expire is set, the key will be leaked forever:
1. No DEL will be received from the master, which does not know about
such a key at all.
2. No eviction will be performed by the slave, since it needs to disable
eviction because it's up to masters, otherwise consistency of data is
lost.
THE FIX
In order to fix the problem, the slave should be able to tag keys that
were created in the slave side and have an expire set in some way.
My solution involved using an unique additional dictionary created by
the writable slave only if needed. The dictionary is obviously keyed by
the key name that we need to track: all the keys that are set with an
expire directly by a client writing to the slave are tracked.
The value in the dictionary is a bitmap of all the DBs where such a key
name need to be tracked, so that we can use a single dictionary to track
keys in all the DBs used by the slave (actually this limits the solution
to the first 64 DBs, but the default with Redis is to use 16 DBs).
This solution allows to pay both a small complexity and CPU penalty,
which is zero when the feature is not used, actually. The slave-side
eviction is encapsulated in code which is not coupled with the rest of
the Redis core, if not for the hook to track the keys.
TODO
I'm doing the first smoke tests to see if the feature works as expected:
so far so good. Unit tests should be added before merging into the
4.0 branch.