To detect when the group (or the whole key) is destroyed to send an
error to the consumers blocked in such group is a problem, so we leave
the consumers listening, the sysadmin is free to create or destroy
groups assuming she/he knows what to do. However a client may be blocked
in a given consumer group, that is later destroyed. Then the stream
receives new elements. In that case there is no sane behavior to serve
the consumer... but to report an error about the group no longer
existing.
More about detecting this synchronously and why it is not done:
1. Normally we don't do that, we leave clients blocked for other data
types such as lists.
2. When we free a stream object there is no longer information about
what was the key it was associated with, so while destroying the
consumer groups we miss the info to unblock the clients in that moment.
3. Objects can be reclaimed in other threads where it is no longer safe
to do client operations.
When a client blocks for a consumer group, we don't know the actual ID
we want to be served: other clients blocked in the same consumer group
may be served first, so the consumer group latest delivered ID changes.
This was not handled correctly, all the clients in the consumer group
were unblocked without data but the first.
We unblocked the client too early, when the group name object was no
longer valid in client->bpop, so propagating XCLAIM later in
streamPropagateXCLAIM() deferenced a field already set to NULL.
Usually blocking operations make a lot of sense with multiple keys so
that we can listen to multiple queues (or whatever the app models) with
a single connection. However in the synchronous case it is more useful
to be able to ask for N elements. This is a change that I also wanted to
perform soon or later in the blocking list variant, but here it is more
natural since there is no reply type difference.
blockForKeys() was not freeing the allocation holding the ID when the
key was already found busy. Fortunately the unit test checked explicitly
for blocking multiple times for the same key (copying a regression in
the blocking lists tests), so the bug was detected by the Redis test leak
checker.
With lists we need to signal only on key creation, but streams can
provide data to clients listening at every new item added.
To make this slightly more efficient we now track different classes of
blocked clients to avoid signaling keys when there is nobody listening.
A typical case is when the stream is used as a time series DB and
accessed only by range with XRANGE.
Bug as old as Redis and blocking operations. It's hard to trigger since
only happens on instance role switch, but the results are quite bad
since an inconsistency between master and slave is created.
How to trigger the bug is a good description of the bug itself.
1. Client does "BLPOP mylist 0" in master.
2. Master is turned into slave, that replicates from New-Master.
3. Client does "LPUSH mylist foo" in New-Master.
4. New-Master propagates write to slave.
5. Slave receives the LPUSH, the blocked client get served.
Now Master "mylist" key has "foo", Slave "mylist" key is empty.
Highlights:
* At step "2" above, the client remains attached, basically escaping any
check performed during command dispatch: read only slave, in that case.
* At step "5" the slave (that was the master), serves the blocked client
consuming a list element, which is not consumed on the master side.
This scenario is technically likely to happen during failovers, however
since Redis Sentinel already disconnects clients using the CLIENT
command when changing the role of the instance, the bug is avoided in
Sentinel deployments.
Closes#2473.
There was a bug in Redis Cluster caused by clients blocked in a blocking
list pop operation, for keys no longer handled by the instance, or
in a condition where the cluster became down after the client blocked.
A typical situation is:
1) BLPOP <somekey> 0
2) <somekey> hash slot is resharded to another master.
The client will block forever int this case.
A symmentrical non-cluster-specific bug happens when an instance is
turned from master to slave. In that case it is more serious since this
will desynchronize data between slaves and masters. This other bug was
discovered as a side effect of thinking about the bug explained and
fixed in this commit, but will be fixed in a separated commit.
1. No need to set btype in processUnblockedClients(), since clients
flagged REDIS_UNBLOCKED should have it already cleared.
2. When putting clients in the unblocked clients list, clientsArePaused()
should flag them with REDIS_UNBLOCKED. Not strictly needed with the
current code but is more coherent.