* fix memlry leaks with diskless replica short read.
* fix a few timing issues with valgrind runs
* fix issue with valgrind and watchdog schedule signal
about the valgrind WD issue:
the stack trace test in logging.tcl, has issues with valgrind:
==28808== Can't extend stack to 0x1ffeffdb38 during signal delivery for thread 1:
==28808== too small or bad protection modes
it seems to be some valgrind bug with SA_ONSTACK.
SA_ONSTACK seems unneeded since WD is not recursive (SA_NODEFER was removed),
also, not sure if it's even valid without a call to sigaltstack()
Now both master and replicas keep track of the last replication offset
that contains meaningful data (ignoring the tailing pings), and both
trim that tail from the replication backlog, and the offset with which
they try to use for psync.
the implication is that if someone missed some pings, or even have
excessive pings that the promoted replica has, it'll still be able to
psync (avoid full sync).
the downside (which was already committed) is that replicas running old
code may fail to psync, since the promoted replica trims pings form it's
backlog.
This commit adds a test that reproduces several cases of promotions and
demotions with stale and non-stale pings
Background:
The mearningful offset on the master was added recently to solve a problem were
the master is left all alone, injecting PINGs into it's backlog when no one is
listening and then gets demoted and tries to replicate from a replica that didn't
have any of the PINGs (or at least not the last ones).
however, consider this case:
master A has two replicas (B and C) replicating directly from it.
there's no traffic at all, and also no network issues, just many pings in the
tail of the backlog. now B gets promoted, A becomes a replica of B, and C
remains a replica of A. when A gets demoted, it trims the pings from its
backlog, and successfully replicate from B. however, C is still aware of
these PINGs, when it'll disconnect and re-connect to A, it'll ask for something
that's not in the backlog anymore (since A trimmed the tail of it's backlog),
and be forced to do a full sync (something it didn't have to do before the
meaningful offset fix).
Besides that, the psync2 test was always failing randomly here and there, it
turns out the reason were PINGs. Investigating it shows the following scenario:
cycle 1: redis #1 is master, and all the rest are direct replicas of #1
cycle 2: redis #2 is promoted to master, #1 is a replica of #2 and #3 is replica of #1
now we see that when #1 is demoted it prints:
17339:S 21 Apr 2020 11:16:38.523 * Using the meaningful offset 3929963 instead of 3929977 to exclude the final PINGs (14 bytes difference)
17339:S 21 Apr 2020 11:16:39.391 * Trying a partial resynchronization (request e2b3f8817735fdfe5fa4626766daa938b61419e5:3929964).
17339:S 21 Apr 2020 11:16:39.392 * Successful partial resynchronization with master.
and when #3 connects to the demoted #2, #2 says:
17339:S 21 Apr 2020 11:16:40.084 * Partial resynchronization not accepted: Requested offset for secondary ID was 3929978, but I can reply up to 3929964
so the issue here is that the meaningful offset feature saved the day for the
demoted master (since it needs to sync from a replica that didn't get the last
ping), but it didn't help one of the other replicas which did get the last ping.
*** [err]: PSYNC2: total sum of full synchronizations is exactly 4 in tests/integration/psync2.tcl
Expected 5 == 4 (context: type eval line 6 cmd {assert {$sum == 4}} proc ::test)
issue was that sometime the test got an unexpected full sync since it
tried to switch to the replica before it was in sync with it's master.
misc:
- handle SSL_has_pending by iterating though these in beforeSleep, and setting timeout of 0 to aeProcessEvents
- fix issue with epoll signaling EPOLLHUP and EPOLLERR only to the write handlers. (needed to detect the rdb pipe was closed)
- add key-load-delay config for testing
- trim connShutdown which is no longer needed
- rioFdsetWrite -> rioFdWrite - simplified since there's no longer need to write to multiple FDs
- don't detect rdb child exited (don't call wait3) until we detect the pipe is closed
- Cleanup bad optimization from rio.c, add another one
* Introduce a connection abstraction layer for all socket operations and
integrate it across the code base.
* Provide an optional TLS connections implementation based on OpenSSL.
* Pull a newer version of hiredis with TLS support.
* Tests, redis-cli updates for TLS support.
now that replica can read rdb directly from the socket, it should avoid exiting
on short read and instead try to re-sync.
this commit tries to have minimal effects on non-diskless rdb reading.
and includes a test that tries to trigger this scenario on various read cases.
The implementation of the diskless replication was currently diskless only on the master side.
The slave side was still storing the received rdb file to the disk before loading it back in and parsing it.
This commit adds two modes to load rdb directly from socket:
1) when-empty
2) using "swapdb"
the third mode of using diskless slave by flushdb is risky and currently not included.
other changes:
--------------
distinguish between aof configuration and state so that we can re-enable aof only when sync eventually
succeeds (and not when exiting from readSyncBulkPayload after a failed attempt)
also a CONFIG GET and INFO during rdb loading would have lied
When loading rdb from the network, don't kill the server on short read (that can be a network error)
Fix rdb check when performed on preamble AOF
tests:
run replication tests for diskless slave too
make replication test a bit more aggressive
Add test for diskless load swapdb
solving few replication related tests race conditions which fail on slow machines
bugfix in slave buffers test: since the test is executed twice, each time with
a different commands count, the threshold for the delta can't be a constant.
Experimentally verified that it can trigger the issue reverting the fix.
At least on my system... Being the bug time/backlog dependant, it is
very hard to tell if this test will be able to trigger the problem
consistently, however even if it triggers the problem once in a while,
we'll see it in the CI environment at http://ci.redis.io.
And many other related Github issues... all reporting the same problem.
There was probably just not enough backlog in certain unlucky runs.
I'll ask people that can reporduce if they see now this as fixed as
well.
Testing with Solaris C compiler (SunOS 5.11 11.2 sun4v sparc sun4v)
there were issues compiling due to atomicvar.h and running the
tests also failed because of "tail" usage not conform with Solaris
tail implementation. This commit fixes both the issues.
Slow systems like the original Raspberry PI need more time
than 5 seconds to start the script and detect writes.
After fixing the Raspberry PI can pass the unit without issues.
This actually includes two changes:
1) No newlines to take the master-slave link up when the upstream master
is down. Doing this is dangerous because the sub-slave often is received
replication protocol for an half-command, so can't receive newlines
without desyncing the replication link, even with the code in order to
cancel out the bytes that PSYNC2 was using. Moreover this is probably
also not needed/sane, because anyway the slave can keep serving
requests, and because if it's configured to don't serve stale data, it's
a good idea, actually, to break the link.
2) When a +CONTINUE with a different ID is received, we now break
connection with the sub-slaves: they need to be notified as well. This
was part of the original specification but for some reason it was not
implemented in the code, and was alter found as a PSYNC2 bug in the
integration testing.
This is the PSYNC2 test that helped find issues in the code, and that
still can show a protocol desync from time to time. Work is in progress
in order to find the issue. For now the test is not enabled in "make
test" and must be run manually.
spopCommand() now runs spopWithCountCommand() in case the <count> param is found.
Added intsetRandomMembers() to Intset: Copies N random members from the set into inputted 'values' array. Uses either the Knuth or Floyd sample algos depending on ratio count/size.
Added setTypeRandomElements() to SET type: Returns a number of random elements from a non empty set. This is a version of setTypeRandomElement() that is modified in order to return multiple entries, using dictGetRandomKeys() and intsetRandomMembers().
Added tests for SPOP with <count>: unit/type/set, unit/scripting, integration/aof
--
Cleaned up code a bit to match with required Redis coding style
When aof-load-truncated option was introduced, with a default of "yes",
the past behavior of the server to abort with trunncated AOF changed, so
we need to explicitly configure the tests to abort with truncated AOF
by setting the option to no.
The bug was triggered by running the test with Valgrind (which is a lot
slower and more sensible to timing issues) after the recent changes
that made Redis more promptly able to reply with the -LOADING error.
When the test is executed using the root account, setting the permission
to 222 does not work as expected, as root can read files with 222
permission.
Now we skip the test if root is detected.
This fixes issue #1034 and the duplicated #1040 issue.
Thanks to Jan-Erik Rediger (@badboy on Github) for finding a way to reproduce the issue.
Redis provides support for blocking operations such as BLPOP or BRPOP.
This operations are identical to normal LPOP and RPOP operations as long
as there are elements in the target list, but if the list is empty they
block waiting for new data to arrive to the list.
All the clients blocked waiting for th same list are served in a FIFO
way, so the first that blocked is the first to be served when there is
more data pushed by another client into the list.
The previous implementation of blocking operations was conceived to
serve clients in the context of push operations. For for instance:
1) There is a client "A" blocked on list "foo".
2) The client "B" performs `LPUSH foo somevalue`.
3) The client "A" is served in the context of the "B" LPUSH,
synchronously.
Processing things in a synchronous way was useful as if "A" pushes a
value that is served by "B", from the point of view of the database is a
NOP (no operation) thing, that is, nothing is replicated, nothing is
written in the AOF file, and so forth.
However later we implemented two things:
1) Variadic LPUSH that could add multiple values to a list in the
context of a single call.
2) BRPOPLPUSH that was a version of BRPOP that also provided a "PUSH"
side effect when receiving data.
This forced us to make the synchronous implementation more complex. If
client "B" is waiting for data, and "A" pushes three elemnents in a
single call, we needed to propagate an LPUSH with a missing argument
in the AOF and replication link. We also needed to make sure to
replicate the LPUSH side of BRPOPLPUSH, but only if in turn did not
happened to serve another blocking client into another list ;)
This were complex but with a few of mutually recursive functions
everything worked as expected... until one day we introduced scripting
in Redis.
Scripting + synchronous blocking operations = Issue #614.
Basically you can't "rewrite" a script to have just a partial effect on
the replicas and AOF file if the script happened to serve a few blocked
clients.
The solution to all this problems, implemented by this commit, is to
change the way we serve blocked clients. Instead of serving the blocked
clients synchronously, in the context of the command performing the PUSH
operation, it is now an asynchronous and iterative process:
1) If a key that has clients blocked waiting for data is the subject of
a list push operation, We simply mark keys as "ready" and put it into a
queue.
2) Every command pushing stuff on lists, as a variadic LPUSH, a script,
or whatever it is, is replicated verbatim without any rewriting.
3) Every time a Redis command, a MULTI/EXEC block, or a script,
completed its execution, we run the list of keys ready to serve blocked
clients (as more data arrived), and process this list serving the
blocked clients.
4) As a result of "3" maybe more keys are ready again for other clients
(as a result of BRPOPLPUSH we may have push operations), so we iterate
back to step "3" if it's needed.
The new code has a much simpler semantics, and a simpler to understand
implementation, with the disadvantage of not being able to "optmize out"
a PUSH+BPOP as a No OP.
This commit will be tested with care before the final merge, more tests
will be added likely.
Now it uses the new wait_for_condition testing primitive.
Also wait_for_condition implementation was fixed in this commit to properly
escape the expr command and its argument.
Apparently because the sample RDB file was not copied before every test
Redis had a chance to replace it with a newly written one, so that the
next test could fail.