This is needed in order to ease the deployment of functions for ephemeral cases, where user
needs to spin up a server with functions pre-loaded.
#### Details:
* Added `--functions-rdb` option to _redis-cli_.
* Functions only rdb via `REPLCONF rdb-filter-only functions`. This is a placeholder for a space
separated inclusion filter for the RDB. In the future can be `REPLCONF rdb-filter-only
"functions db:3 key-patten:user*"` and a complementing `rdb-filter-exclude` `REPLCONF`
can also be added.
* Handle "slave requirements" specification to RDB saving code so we can use the same RDB
when different slaves express the same requirements (like functions-only) and not share the
RDB when their requirements differ. This is currently just a flags `int`, but can be extended to
a more complex structure with various filter fields.
* make sure to support filters only in diskless replication mode (not to override the persistence file),
we do that by forcing diskless (even if disabled by config)
other changes:
* some refactoring in rdb.c (extract portion of a big function to a sub-function)
* rdb_key_save_delay used in AOFRW too
* sendChildInfo takes the number of updated keys (incremental, rather than absolute)
Co-authored-by: Oran Agra <oran@redislabs.com>
Follow the conclusions to support Functions in redis cluster (#9899)
Added 2 new FUNCTION sub-commands:
1. `FUNCTION DUMP` - dump a binary payload representation of all the functions.
2. `FUNCTION RESTORE <PAYLOAD> [FLUSH|APPEND|REPLACE]` - give the binary payload extracted
using `FUNCTION DUMP`, restore all the functions on the given payload. Restore policy can be given to
control how to handle existing functions (default is APPEND):
* FLUSH: delete all existing functions.
* APPEND: appends the restored functions to the existing functions. On collision, abort.
* REPLACE: appends the restored functions to the existing functions. On collision,
replace the old function with the new function.
Modify `redis-cli --cluster add-node` to use `FUNCTION DUMP` to get existing functions from
one of the nodes in the cluster, and `FUNCTION RESTORE` to load the same set of functions
to the new node. `redis-cli` will execute this step before sending the `CLUSTER MEET` command
to the new node. If `FUNCTION DUMP` returns an error, assume the current Redis version do not
support functions and skip `FUNCTION RESTORE`. If `FUNCTION RESTORE` fails, abort and do not send
the `CLUSTER MEET` command. If the new node already contains functions (before the `FUNCTION RESTORE`
is sent), abort and do not add the node to the cluster. Test was added to verify
`redis-cli --cluster add-node` works as expected.
The issue with MAY_REPLICATE is that all automatic mechanisms to handle
write commands will not work. This require have a special treatment for:
* Not allow those commands to be executed on RO replica.
* Allow those commands to be executed on RO replica from primary connection.
* Allow those commands to be executed on the RO replica from AOF.
By setting those commands as WRITE commands we are getting all those properties from Redis.
Test was added to verify that those properties work as expected.
In addition, rearrange when and where functions are flushed. Before this PR functions were
flushed manually on `rdbLoadRio` and cleaned manually on failure. This contradicts the
assumptions that functions are data and need to be created/deleted alongside with the
data. A side effect of this, for example, `debug reload noflush` did not flush the data but
did flush the functions, `debug loadaof` flush the data but not the functions.
This PR move functions deletion into `emptyDb`. `emptyDb` (renamed to `emptyData`) will
now accept an additional flag, `NOFUNCTIONS` which specifically indicate that we do not
want to flush the functions (on all other cases, functions will be flushed). Used the new flag
on FLUSHALL and FLUSHDB only! Tests were added to `debug reload` and `debug loadaof`
to verify that functions behave the same as the data.
Notice that because now functions will be deleted along side with the data we can not allow
`CLUSTER RESET` to be called from within a function (it will cause the function to be released
while running), this PR adds `NO_SCRIPT` flag to `CLUSTER RESET` so it will not be possible
to be called from within a function. The other cluster commands are allowed from within a
function (there are use-cases that uses `GETKEYSINSLOT` to iterate over all the keys on a
given slot). Tests was added to verify `CLUSTER RESET` is denied from within a script.
Another small change on this PR is that `RDBFLAGS_ALLOW_DUP` is also applicable on functions.
When loading functions, if this flag is set, we will replace old functions with new ones on collisions.
# Background
The main goal of this PR is to remove relevant logics on Lua script verbatim replication,
only keeping effects replication logic, which has been set as default since Redis 5.0.
As a result, Lua in Redis 7.0 would be acting the same as Redis 6.0 with default
configuration from users' point of view.
There are lots of reasons to remove verbatim replication.
Antirez has listed some of the benefits in Issue #5292:
>1. No longer need to explain to users side effects into scripts.
They can do whatever they want.
>2. No need for a cache about scripts that we sent or not to the slaves.
>3. No need to sort the output of certain commands inside scripts
(SMEMBERS and others): this both simplifies and gains speed.
>4. No need to store scripts inside the RDB file in order to startup correctly.
>5. No problems about evicting keys during the script execution.
When looking back at Redis 5.0, antirez and core team decided to set the config
`lua-replicate-commands yes` by default instead of removing verbatim replication
directly, in case some bad situations happened. 3 years later now before Redis 7.0,
it's time to remove it formally.
# Changes
- configuration for lua-replicate-commands removed
- created config file stub for backward compatibility
- Replication script cache removed
- this is useless under script effects replication
- relevant statistics also removed
- script persistence in RDB files is also removed
- Propagation of SCRIPT LOAD and SCRIPT FLUSH to replica / AOF removed
- Deterministic execution logic in scripts removed (i.e. don't run write commands
after random ones, and sorting output of commands with random order)
- the flags indicating which commands have non-deterministic results are kept as hints to clients.
- `redis.replicate_commands()` & `redis.set_repl()` changed
- now `redis.replicate_commands()` does nothing and return an 1
- ...and then `redis.set_repl()` can be issued before `redis.replicate_commands()` now
- Relevant TCL cases adjusted
- DEBUG lua-always-replicate-commands removed
# Other changes
- Fix a recent bug comparing CLIENT_ID_AOF to original_client->flags instead of id. (introduced in #9780)
Co-authored-by: Oran Agra <oran@redislabs.com>
When rdb creates a consumer without determining whether it exists in advance,
it may return NULL and crash if it encounters corrupt data with duplicate consumers.
Redis function unit is located inside functions.c
and contains Redis Function implementation:
1. FUNCTION commands:
* FUNCTION CREATE
* FCALL
* FCALL_RO
* FUNCTION DELETE
* FUNCTION KILL
* FUNCTION INFO
2. Register engine
In addition, this commit introduce the first engine
that uses the Redis Function capabilities, the
Lua engine.
The following variable was renamed:
1. lua_caller -> script_caller
2. lua_time_limit -> script_time_limit
3. lua_timedout -> script_timedout
4. lua_oom -> script_oom
5. lua_disable_deny_script -> script_disable_deny_script
6. in_eval -> in_script
The following variables was moved to lctx under eval.c
1. lua
2. lua_client
3. lua_cur_script
4. lua_scripts
5. lua_scripts_mem
6. lua_replicate_commands
7. lua_write_dirty
8. lua_random_dirty
9. lua_multi_emitted
10. lua_repl
11. lua_kill
12. lua_time_start
13. lua_time_snapshot
This commit is in a low risk of introducing any issues and it
is just moving varibales around and not changing any logic.
logs message prints wrong file is failed to open temporary file
logs have error occurred in getcwd (uses same errno to report error)
Co-authored-by: Pavel Melkozerov <pavel.melkozerov@nokia.com>
Part three of implementing #8702, following #8887 and #9366 .
## Description of the feature
1. Replace the ziplist container of quicklist with listpack.
2. Convert existing quicklist ziplists on RDB loading time. an O(n) operation.
## Interface changes
1. New `list-max-listpack-size` config is an alias for `list-max-ziplist-size`.
2. Replace `debug ziplist` command with `debug listpack`.
## Internal changes
1. Add `lpMerge` to merge two listpacks . (same as `ziplistMerge`)
2. Add `lpRepr` to print info of listpack which is used in debugCommand and `quicklistRepr`. (same as `ziplistRepr`)
3. Replace `QUICKLIST_NODE_CONTAINER_ZIPLIST` with `QUICKLIST_NODE_CONTAINER_PACKED`(following #9357 ).
It represent that a quicklistNode is a packed node, as opposed to a plain node.
4. Remove `createZiplistObject` method, which is never used.
5. Calculate listpack entry size using overhead overestimation in `quicklistAllowInsert`.
We prefer an overestimation, which would at worse lead to a few bytes below the lowest limit of 4k.
## Improvements
1. Calling `lpShrinkToFit` after converting Ziplist to listpack, which was missed at #9366.
2. Optimize `quicklistAppendPlainNode` to avoid memcpy data.
## Bugfix
1. Fix crash in `quicklistRepr` when ziplist is compressed, introduced from #9366.
## Test
1. Add unittest for `lpMerge`.
2. Modify the old quicklist ziplist corrupt dump test.
Co-authored-by: Oran Agra <oran@redislabs.com>
- Added sanitizer support. `address`, `undefined` and `thread` sanitizers are available.
- To build Redis with desired sanitizer : `make SANITIZER=undefined`
- There were some sanitizer findings, cleaned up codebase
- Added tests with address and undefined behavior sanitizers to daily CI.
- Added tests with address sanitizer to the per-PR CI (smoke out mem leaks sooner).
Basically, there are three types of issues :
**1- Unaligned load/store** : Most probably, this issue may cause a crash on a platform that
does not support unaligned access. Redis does unaligned access only on supported platforms.
**2- Signed integer overflow.** Although, signed overflow issue can be problematic time to time
and change how compiler generates code, current findings mostly about signed shift or simple
addition overflow. For most platforms Redis can be compiled for, this wouldn't cause any issue
as far as I can tell (checked generated code on godbolt.org).
**3 -Minor leak** (redis-cli), **use-after-free**(just before calling exit());
UB means nothing guaranteed and risky to reason about program behavior but I don't think any
of the fixes here worth backporting. As sanitizers are now part of the CI, preventing new issues
will be the real benefit.
For diskless replication in swapdb mode, considering we already spend replica memory
having a backup of current db to restore in case of failure, we can have the following benefits
by instead swapping database only in case we succeeded in transferring db from master:
- Avoid `LOADING` response during failed and successful synchronization for cases where the
replica is already up and running with data.
- Faster total time of diskless replication, because now we're moving from Transfer + Flush + Load
time to Transfer + Load only. Flushing the tempDb is done asynchronously after swapping.
- This could be implemented also for disk replication with similar benefits if consumers are willing
to spend the extra memory usage.
General notes:
- The concept of `backupDb` becomes `tempDb` for clarity.
- Async loading mode will only kick in if the replica is syncing from a master that has the same
repl-id the one it had before. i.e. the data it's getting belongs to a different time of the same timeline.
- New property in INFO: `async_loading` to differentiate from the blocking loading
- Slot to Key mapping is now a field of `redisDb` as it's more natural to access it from both server.db
and the tempDb that is passed around.
- Because this is affecting replicas only, we assume that if they are not readonly and write commands
during replication, they are lost after SYNC same way as before, but we're still denying CONFIG SET
here anyways to avoid complications.
Considerations for review:
- We have many cases where server.loading flag is used and even though I tried my best, there may
be cases where async_loading should be checked as well and cases where it shouldn't (would require
very good understanding of whole code)
- Several places that had different behavior depending on the loading flag where actually meant to just
handle commands coming from the AOF client differently than ones coming from real clients, changed
to check CLIENT_ID_AOF instead.
**Additional for Release Notes**
- Bugfix - server.dirty was not incremented for any kind of diskless replication, as effect it wouldn't
contribute on triggering next database SAVE
- New flag for RM_GetContextFlags module API: REDISMODULE_CTX_FLAGS_ASYNC_LOADING
- Deprecated RedisModuleEvent_ReplBackup. Starting from Redis 7.0, we don't fire this event.
Instead, we have the new RedisModuleEvent_ReplAsyncLoad holding 3 sub-events: STARTED,
ABORTED and COMPLETED.
- New module flag REDISMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD for RedisModule_SetModuleOptions
to allow modules to declare they support the diskless replication with async loading (when absent, we fall
back to disk-based loading).
Co-authored-by: Eduardo Semprebon <edus@saxobank.com>
Co-authored-by: Oran Agra <oran@redislabs.com>
Redis lists are stored in quicklist, which is currently a linked list of ziplists.
Ziplists are limited to storing elements no larger than 4GB, so when bigger
items are added they're getting truncated.
This PR changes quicklists so that they're capable of storing large items
in quicklist nodes that are plain string buffers rather than ziplist.
As part of the PR there were few other changes in redis:
1. new DEBUG sub-commands:
- QUICKLIST-PACKED-THRESHOLD - set the threshold of for the node type to
be plan or ziplist. default (1GB)
- QUICKLIST <key> - Shows low level info about the quicklist encoding of <key>
2. rdb format change:
- A new type was added - RDB_TYPE_LIST_QUICKLIST_2 .
- container type (packed / plain) was added to the beginning of the rdb object
(before the actual node list).
3. testing:
- Tests that requires over 100MB will be by default skipped. a new flag was
added to 'runtest' to run the large memory tests (not used by default)
Co-authored-by: sundb <sundbcn@gmail.com>
Co-authored-by: Oran Agra <oran@redislabs.com>
I moved a bunch of stats in redisFork to be executed only on successful
fork, since they seem wrong to be done when it failed.
I guess when fork fails it does that immediately, no latency spike.
Implement createPipe() to combine creating pipe and setting flags, also reduce
system calls by prioritizing pipe2() over pipe().
Without createPipe(), we have to call pipe() to create a pipe and then call some
functions (like anetCloexec() and anetNonBlock()) of anet.c to set flags respectively,
which leads to some extra system calls, now we can leverage pipe2() to combine
them and make the process of creating pipe more convergent in createPipe().
Co-authored-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
Co-authored-by: Oran Agra <oran@redislabs.com>
- fix possible heap corruption in ziplist and listpack resulting by trying to
allocate more than the maximum size of 4GB.
- prevent ziplist (hash and zset) from reaching size of above 1GB, will be
converted to HT encoding, that's not a useful size.
- prevent listpack (stream) from reaching size of above 1GB.
- XADD will start a new listpack if the new record may cause the previous
listpack to grow over 1GB.
- XADD will respond with an error if a single stream record is over 1GB
- List type (ziplist in quicklist) was truncating strings that were over 4GB,
now it'll respond with an error.
Co-authored-by: sundb <sundbcn@gmail.com>
The vulnerability involves changing the default set-max-intset-entries
configuration parameter to a very large value and constructing specially
crafted commands to manipulate sets
The main idea is how to allow a master to load replication info from RDB file when rebooting, if master can load replication info it means that replicas may have the chance to psync with master, it can save much traffic.
The key point is we need guarantee safety and consistency, so there
are two differences between master and replica:
1. master would load the replication info as secondary ID and
offset, in case other masters have the same replid.
2. when master loading RDB, it would propagate expired keys as DEL
command to replication backlog, then replica can receive these
commands to delete stale keys.
p.s. the expired keys when RDB loading is useful for users, so
we show it as `rdb_last_load_keys_expired` and `rdb_last_load_keys_loaded` in info persistence.
Moreover, after load replication info, master should update
`no_replica_time` in case loading RDB cost too long time.
Part two of implementing #8702 (zset), after #8887.
## Description of the feature
Replaced all uses of ziplist with listpack in t_zset, and optimized some of the code to optimize performance.
## Rdb format changes
New `RDB_TYPE_ZSET_LISTPACK` rdb type.
## Rdb loading improvements:
1) Pre-expansion of dict for validation of duplicate data for listpack and ziplist.
2) Simplifying the release of empty key objects when RDB loading.
3) Unify ziplist and listpack data verify methods for zset and hash, and move code to rdb.c.
## Interface changes
1) New `zset-max-listpack-entries` config is an alias for `zset-max-ziplist-entries` (same with `zset-max-listpack-value`).
2) OBJECT ENCODING will return listpack instead of ziplist.
## Listpack improvements:
1) Add `lpDeleteRange` and `lpDeleteRangeWithEntry` functions to delete a range of entries from listpack.
2) Improve the performance of `lpCompare`, converting from string to integer is faster than converting from integer to string.
3) Replace `snprintf` with `ll2string` to improve performance in converting numbers to strings in `lpGet()`.
## Zset improvements:
1) Improve the performance of `zzlFind` method, use `lpFind` instead of `lpCompare` in a loop.
2) Use `lpDeleteRangeWithEntry` instead of `lpDelete` twice to delete a element of zset.
## Tests
1) Add some unittests for `lpDeleteRange` and `lpDeleteRangeWithEntry` function.
2) Add zset RDB loading test.
3) Add benchmark test for `lpCompare` and `ziplsitCompare`.
4) Add empty listpack zset corrupt dump test.
Part one of implementing #8702 (taking hashes first before other types)
## Description of the feature
1. Change ziplist encoded hash objects to listpack encoding.
2. Convert existing ziplists on RDB loading time. an O(n) operation.
## Rdb format changes
1. Add RDB_TYPE_HASH_LISTPACK rdb type.
2. Bump RDB_VERSION to 10
## Interface changes
1. New `hash-max-listpack-entries` config is an alias for `hash-max-ziplist-entries` (same with `hash-max-listpack-value`)
2. OBJECT ENCODING will return `listpack` instead of `ziplist`
## Listpack improvements:
1. Support direct insert, replace integer element (rather than convert back and forth from string)
3. Add more listpack capabilities to match the ziplist ones (like `lpFind`, `lpRandomPairs` and such)
4. Optimize element length fetching, avoid multiple calculations
5. Use inline to avoid function call overhead.
## Tests
1. Add a new test to the RDB load time conversion
2. Adding the listpack unit tests. (based on the one in ziplist.c)
3. Add a few "corrupt payload: fuzzer findings" tests, and slightly modify existing ones.
Co-authored-by: Oran Agra <oran@redislabs.com>
This commit mainly fixes empty keys due to RDB loading and restore command,
which was omitted in #9297.
1) When loading quicklsit, if all the ziplists in the quicklist are empty, NULL will be returned.
If only some of the ziplists are empty, then we will skip the empty ziplists silently.
2) When loading hash zipmap, if zipmap is empty, sanitization check will fail.
3) When loading hash ziplist, if ziplist is empty, NULL will be returned.
4) Add RDB loading test with sanitize.
Recently we found two issues in the fuzzer tester: #9302#9285
After fixing them, more problems surfaced and this PR (as well as #9297) aims to fix them.
Here's a list of the fixes
- Prevent an overflow when allocating a dict hashtable
- Prevent OOM when attempting to allocate a huge string
- Prevent a few invalid accesses in listpack
- Improve sanitization of listpack first entry
- Validate integrity of stream consumer groups PEL
- Validate integrity of stream listpack entry IDs
- Validate ziplist tail followed by extra data which start with 0xff
Co-authored-by: sundb <sundbcn@gmail.com>
When we load rdb or restore command, if we encounter a length of 0, it will result in the creation of an empty key.
This could either be a corrupt payload, or a result of a bug (see #8453 )
This PR mainly fixes the following:
1) When restore command will return `Bad data format` error.
2) When loading RDB, we will silently discard the key.
Co-authored-by: Oran Agra <oran@redislabs.com>
Reduce dict struct memory overhead
on 64bit dict size goes down from jemalloc's 96 byte bin to its 56 byte bin.
summary of changes:
- Remove `privdata` from callbacks and dict creation. (this affects many files, see "Interface change" below).
- Meld `dictht` struct into the `dict` struct to eliminate struct padding. (this affects just dict.c and defrag.c)
- Eliminate the `sizemask` field, can be calculated from size when needed.
- Convert the `size` field into `size_exp` (exponent), utilizes one byte instead of 8.
Interface change: pass dict pointer to dict type call back functions.
This is instead of passing the removed privdata field. In the future if
we'd like to have private data in the callbacks we can extract it from
the dict type. We can extend dictType to include a custom dict struct
allocator and use it to allocate more data at the end of the dict
struct. This data can then be used to store private data later acccessed
by the callbacks.
## Backgroud
As we know, after `fork`, one process will copy pages when writing data to these
pages(CoW), and another process still keep old pages, they totally cost more memory.
For redis, we suffered that redis consumed much memory when the fork child is serializing
key/values, even that maybe cause OOM.
But actually we find, in redis fork child process, the child process don't need to keep some
memory and parent process may write or update that, for example, child process will never
access the key-value that is serialized but users may update it in parent process.
So we think it may reduce COW if the child process release memory that it is not needed.
## Implementation
For releasing key value in child process, we may think we call `decrRefCount` to free memory,
but i find the fork child process still use much memory when we don't write any data to redis,
and it costs much more time that slows down bgsave. Maybe because memory allocator doesn't
really release memory to OS, and it may modify some inner data for this free operation, especially
when we free small objects.
Moreover, CoW is based on pages, so it is a easy way that we only free the memory bulk that is
not less than kernel page size. madvise(MADV_DONTNEED) can quickly release specified region
pages to OS bypassing memory allocator, and allocator still consider that this memory still is used
and don't change its inner data.
There are some buffers we can release in the fork child process:
- **Serialized key-values**
the fork child process never access serialized key-values, so we try to free them.
Because we only can release big bulk memory, and it is time consumed to iterate all
items/members/fields/entries of complex data type. So we decide to iterate them and
try to release them only when their average size of item/member/field/entry is more
than page size of OS.
- **Replication backlog**
Because replication backlog is a cycle buffer, it will be changed quickly if redis has heavy
write traffic, but in fork child process, we don't need to access that.
- **Client buffers**
If clients have requests during having the fork child process, clients' buffer also be changed
frequently. The memory includes client query buffer, output buffer, and client struct used memory.
To get child process peak private dirty memory, we need to count peak memory instead
of last used memory, because the child process may continue to release memory (since
COW used to only grow till now, the last was equivalent to the peak).
Also we're adding a new `current_cow_peak` info variable (to complement the existing
`current_cow_size`)
Co-authored-by: Oran Agra <oran@redislabs.com>
Fixes:
- When a consumer is created as a side effect, redis didn't issue a keyspace notification,
nor incremented the server.dirty (affects periodic snapshots).
this was a bug in XREADGROUP, XCLAIM, and XAUTOCLAIM.
- When attempting to delete a non-existent consumer, don't issue a keyspace notification
and don't increment server.dirty
this was a bug in XGROUP DELCONSUMER
Other changes:
- Changed streamLookupConsumer() to always only do lookup consumer (never do implicit creation),
Its last seen time is updated unless the SLC_NO_REFRESH flag is specified.
- Added streamCreateConsumer() to create a new consumer. When the creation is successful,
it will notify and dirty++ unless the SCC_NO_NOTIFY or SCC_NO_DIRTIFY flags is specified.
- Changed streamDelConsumer() to always only do delete consumer.
- Added keyspace notifications tests about stream events.
Currently a replica is able to recover from a short read (when diskless loading
is enabled) and avoid crashing/exiting, replying to the master and then the rdb
could be sent again by the master for another load attempt by the replica.
There were a few scenarios that were not behaving similarly, such as when
there is no end-of-file marker, or when module aux data failed to load, which
should be allowed to occur due to a short read.
Create new module type enhanced callbacks: mem_usage2, free_effort2, unlink2, copy2.
These will be given a context point from which the module can obtain the key name and database id.
In addition the digest and defrag context can now be used to obtain the key name and database id.
This PR adds a spell checker CI action that will fail future PRs if they introduce typos and spelling mistakes.
This spell checker is based on blacklist of common spelling mistakes, so it will not catch everything,
but at least it is also unlikely to cause false positives.
Besides that, the PR also fixes many spelling mistakes and types, not all are a result of the spell checker we use.
Here's a summary of other changes:
1. Scanned the entire source code and fixes all sorts of typos and spelling mistakes (including missing or extra spaces).
2. Outdated function / variable / argument names in comments
3. Fix outdated keyspace masks error log when we check `config.notify-keyspace-events` in loadServerConfigFromString.
4. Trim the white space at the end of line in `module.c`. Check: https://github.com/redis/redis/pull/7751
5. Some outdated https link URLs.
6. Fix some outdated comment. Such as:
- In README: about the rdb, we used to said create a `thread`, change to `process`
- dbRandomKey function coment (about the dictGetRandomKey, change to dictGetFairRandomKey)
- notifyKeyspaceEvent fucntion comment (add type arg)
- Some others minor fix in comment (Most of them are incorrectly quoted by variable names)
7. Modified the error log so that users can easily distinguish between TCP and TLS in `changeBindAddr`
In diskless replication, we create a read pipe for the RDB, between the child and the parent.
When we close this pipe (fd), the read handler also needs to be removed from the event loop (if it still registered).
Otherwise, next time we will use the same fd, the registration will be fail (panic), because
we will use EPOLL_CTL_MOD (the fd still register in the event loop), on fd that already removed from epoll_ctl
when string2ll was made to replace isStringRepresentableAsLongLong
(which was similar to what rdbTryIntegerEncoding does),
rdbTryIntegerEncoding was probably forgotten.
* Adding current_save_keys_total and current_save_keys_processed info fields.
Present in replication, BGSAVE and AOFRW.
* Changing RM_SendChildCOWInfo() to RM_SendChildHeartbeat(double progress)
* Adding new info field current_fork_perc. Present in Replication, BGSAVE, AOFRW,
and module forks.
Add INFO field, rdb_active_cow_size, to report COW of a live fork child while
it's active.
- once in 1024 keys check the time, and if there's more than one second since
the last report send a report to the parent via the pipe.
- refactor the child_info_data struct, it's an implementation detail that
shouldn't be in the server struct, and not used to communicate data between
caller and callee
- remove the magic value from that struct (not sure what it was good for), and
instead add handling of short reads.
- add another value to the structure, cow_type, to indicate if the report is
for the new rdb_active_cow_size field, or it's the last report of a
successful operation
- add new Module API to report the active COW
- add more asserts variants to test.tcl
This is a refactory commit, isn't suppose to have any actual impact.
it does the following:
- keep just one server struct fork child pid variable instead of 3
- have one server struct variable indicating the purpose of the current fork
child.
- redisFork is now responsible of updating the server struct with the pid,
which means it can be the one that calls updateDictResizePolicy
- move child info pipe handling into redisFork instead of having them
repeated outside
- there are two classes of fork purposes, mutually exclusive group (AOF, RDB,
Module), and one that can create several forks to coexist in parallel (LDB,
but maybe Modules some day too, Module API allows for that).
- minor fix to killRDBChild:
unlike killAppendOnlyChild and TerminateModuleForkChild, the killRDBChild
doesn't clear the pid variable or call wait4, so checkChildrenDone does
the cleanup for it.
This commit removes the explicit calls to rdbRemoveTempFile, closeChildInfoPipe,
updateDictResizePolicy, which didn't do any harm, but where unnecessary.
* Allow runtest-moduleapi use a different 'make', for systems where GNU Make is 'gmake'.
* Fix issue with builds on Solaris re-building everything from scratch due to CFLAGS/LDFLAGS not stored.
* Fix compile failure on Solaris due to atomicvar and a bunch of warnings.
* Fix garbled log timestamps on Solaris.
If RESTORE passes successfully with full sanitization, we can't affort
to crash later on assertion due to duplicate records in a hash when
converting it form ziplist to dict.
This means that when doing full sanitization, we must make sure there
are no duplicate records in any of the collections.
The test creates keys with various encodings, DUMP them, corrupt the payload
and RESTORES it.
It utilizes the recently added use-exit-on-panic config to distinguish between
asserts and segfaults.
If the restore succeeds, it runs random commands on the key to attempt to
trigger a crash.
It runs in two modes, one with deep sanitation enabled and one without.
In the first one we don't expect any assertions or segfaults, in the second one
we expect assertions, but no segfaults.
We also check for leaks and invalid reads using valgrind, and if we find them
we print the commands that lead to that issue.
Changes in the code (other than the test):
- Replace a few NPD (null pointer deference) flows and division by zero with an
assertion, so that it doesn't fail the test. (since we set the server to use
`exit` rather than `abort` on assertion).
- Fix quite a lot of flows in rdb.c that could have lead to memory leaks in
RESTORE command (since it now responds with an error rather than panic)
- Add a DEBUG flag for SET-SKIP-CHECKSUM-VALIDATION so that the test don't need
to bother with faking a valid checksum
- Remove a pile of code in serverLogObjectDebugInfo which is actually unsafe to
run in the crash report (see comments in the code)
- fix a missing boundary check in lzf_decompress
test suite infra improvements:
- be able to run valgrind checks before the process terminates
- rotate log files when restarting servers
When loading an encoded payload we will at least do a shallow validation to
check that the size that's encoded in the payload matches the size of the
allocation.
This let's us later use this encoded size to make sure the various offsets
inside encoded payload don't reach outside the allocation, if they do, we'll
assert/panic, but at least we won't segfault or smear memory.
We can also do 'deep' validation which runs on all the records of the encoded
payload and validates that they don't contain invalid offsets. This lets us
detect corruptions early and reject a RESTORE command rather than accepting
it and asserting (crashing) later when accessing that payload via some command.
configuration:
- adding ACL flag skip-sanitize-payload
- adding config sanitize-dump-payload [yes/no/clients]
For now, we don't have a good way to ensure MIGRATE in cluster resharding isn't
being slowed down by these sanitation, so i'm setting the default value to `no`,
but later on it should be set to `clients` by default.
changes:
- changing rdbReportError not to `exit` in RESTORE command
- adding a new stat to be able to later check if cluster MIGRATE isn't being
slowed down by sanitation.
Expose new `loading_rdb_used_mem` showing the used memory of the server
that saved the RDB file we're currently using.
This is useful in diskless replication when the total size of the rdb is
unkown, and can be used as a rought estimation of progres.
Use that new field to calculate the "user friendly"
`loading_loaded_perc` and `loading_eta_seconds`.
Expose `master_sync_total_bytes` and `master_sync_total_bytes` to complement
on the existing `master_sync_total_bytes` (which cannot be used on its own
to calculate progress).
Add "user friendly" field for `master_sync_perc`