The cleanup code expects that if 'di' is not NULL, it is a valid
iterator that should be freed.
The result of this bug was a crash of the AOF rewriting process if an
error occurred after the DBs data are written and the iterator is no
longer valid.
This replaces individual ziplist vs. linkedlist representations
for Redis list operations.
Big thanks for all the reviews and feedback from everybody in
https://github.com/antirez/redis/pull/2143
- Remove trailing newlines from redis.conf
- Fix comment misspelling
- Clarifies zipEncodeLength usage and a C API mention (#1243, #1242)
- Fix cluster typos (inspired by @papanikge #1507)
- Fix rewite -> rewrite in a few places (inspired by #682)
Closes#1243, #1242, #1507
It is not clear if files open in append only mode will automatically fix
their offset after a truncate(2) operation. This commit makes sure that
we reposition the AOF file descriptor offset at the end of the file
after a truncated AOF is loaded and trimmed to the last valid command.
Recently we introduced the ability to load truncated AOFs, but
unfortuantely the support was broken since the server, after loading the
truncated AOF, continues appending to the file that is corrupted at the
end. The problem is fixed only in the next AOF rewrite.
This commit fixes the issue by truncating the AOF to the last valid
opcode, and aborting if it is not possible to truncate the file
correctly.
Because of the new ability to start with a truncated AOF, we need
to correctly release all the memory on EOF error. Otherwise there is a
small leak, that is not really a problem, but causes a false positive in
the tests that detect memory leaks.
We now wait up to 1 second for diff data to come from the parent,
however we use poll(2) to wait for more data, and use a counter of
contiguous failures to get data for N times (set to 20 experimentally
after different tests) as an early stop condition to avoid wasting 1
second when the write traffic is too low.
This commit adds peer ID caching in the client structure plus an API
change and the use of sdsMakeRoomFor() in order to improve the
reallocation pattern to generate the CLIENT LIST output.
Both the changes account for a very significant speedup.
When we are blocked and a few events a processed from time to time, it
is smarter to call the event handler a few times in order to handle the
accept, read, write, close cycle of a client in a single pass, otherwise
there is too much latency added for clients to receive a reply while the
server is busy in some way (for example during the DB loading).
Previously, the (!fp) would only catch lack of free space
under OS X. Linux waits to discover it can't write until
it actually writes contents to disk.
(fwrite() returns success even if the underlying file
has no free space to write into. All the errors
only show up at flush/sync/close time.)
Fixesantirez/redis#1604
A system similar to the RDB write error handling is used, in which when
we can't write to the AOF file, writes are no longer accepted until we
are able to write again.
For fsync == always we still abort on errors since there is currently no
easy way to avoid replying with success to the user otherwise, and this
would violate the contract with the user of only acknowledging data
already secured on disk.
Previously two string encodings were used for string objects:
1) REDIS_ENCODING_RAW: a string object with obj->ptr pointing to an sds
stirng.
2) REDIS_ENCODING_INT: a string object where the obj->ptr void pointer
is casted to a long.
This commit introduces a experimental new encoding called
REDIS_ENCODING_EMBSTR that implements an object represented by an sds
string that is not modifiable but allocated in the same memory chunk as
the robj structure itself.
The chunk looks like the following:
+--------------+-----------+------------+--------+----+
| robj data... | robj->ptr | sds header | string | \0 |
+--------------+-----+-----+------------+--------+----+
| ^
+-----------------------+
The robj->ptr points to the contiguous sds string data, so the object
can be manipulated with the same functions used to manipulate plan
string objects, however we need just on malloc and one free in order to
allocate or release this kind of objects. Moreover it has better cache
locality.
This new allocation strategy should benefit both the memory usage and
the performances. A performance gain between 60 and 70% was observed
during micro-benchmarks, however there is more work to do to evaluate
the performance impact and the memory usage behavior.