Background:
#3467 (redis 4.0.0), started ignoring ENOPROTOOPT, but did that only for
the default bind (in case bind config wasn't explicitly set).
#5598 (redis 5.0.3), added that for bind addresses explicitly set
(following bug reports in Debian for redis 4.0.9 and 5.0.1), it
also ignored a bunch of other errors like EPROTONOSUPPORT which was
requested in #3894, and also added EADDRNOTAVAIL (wasn't clear why).
This (ignoring EADDRNOTAVAIL) makes redis start successfully, even if a
certain network interface isn't up yet , in which case we rather redis
fail and will be re-tried when the NIC is up, see #7933.
However, it turns out that when IPv6 is disabled (supported but unused),
the error we're getting is EADDRNOTAVAIL. and in many systems the
default config file tries to bind to localhost for both v4 and v6 and
would like to silently ignore the error on v6 if disabled.
This means that we sometimes want to ignore EADDRNOTAVAIL and other times
we wanna fail.
So this commit changes these main things:
1. Ignore all the errors we ignore for both explicitly requested bind
address and a default implicit one.
2. Add a '-' prefix to allow EADDRNOTAVAIL be ignored (by default that's
different than the previous behavior).
3. Restructure that function in a more readable and maintainable way see
below.
4. Make the default behavior of listening to all achievable by setting
a bind config directive to * (previously only possible by omitting
it)
5. document everything.
The old structure of this function was that even if there are no bind
addresses requested, the loop that runs though the bind addresses runs
at least once anyway!
In that one iteration of the loop it binds to both v4 and v6 addresses,
handles errors for each of them separately, and then eventually at the
if-else chain, handles the error of the last bind attempt again!
This was very hard to read and very error prone to maintain, instead now
when the bind info is missing we create one with two entries, and run
the simple loop twice.
In case redis starts and find that THP is enabled ("always"), instead
of printing a log message, which might go unnoticed, redis will try to
disable it (just for the redis process).
Note: it looks like on self-bulit kernels THP is likely be set to "always" by default.
Some discuss about THP side effect on Linux:
according to http://www.antirez.com/news/84, we can see that
redis latency spikes are caused by linux kernel THP feature.
I have tested on E3-2650 v3, and found that 2M huge page costs
about 0.25ms to fix COW page fault.
Add a new config 'disable-thp', the recommended setting is 'yes',
(default) the redis tries to disable THP by prctl syscall. But
users who really want THP can set it to "no"
Thanks to Oran & Yossi for suggestions.
Signed-off-by: zhenwei pi <pizhenwei@bytedance.com>
Rather than blindly evicting until maxmemory limit is achieved, this
update adds a time limit to eviction. While over the maxmemory limit,
eviction will process before each command AND as a timeProc when no
commands are running.
This will reduce the latency impact on many cases, especially pathological
cases like massive used memory increase during dict rehashing.
There is a risk that some other edge cases (like massive pipelined use
of MGET) could cause Redis memory usage to keep growing despite the
eviction attempts, so a new maxmemory-eviction-tenacity config is
introduced to let users mitigate that.
1. default value of always-show-logo was not consistent with the default in the code
2. comment about cluster-replica-no-failover is wrong since we can only do manually failover upon replicas
3. improve description about always-show-logo
Add Linux kernel OOM killer control option.
This adds the ability to control the Linux OOM killer oom_score_adj
parameter for all Redis processes, depending on the process role (i.e.
master, replica, background child).
A oom-score-adj global boolean flag control this feature. In addition,
specific values can be configured using oom-score-adj-values if
additional tuning is required.
This makes it possible to add tests that generate assertions, and run
them with valgrind, making sure that there are no memory violations
prior to the assertion.
New config options:
- crash-log-enabled - can be disabled for cleaner core dumps
- crash-memcheck-enabled - useful for faster termination after a crash
- use-exit-on-panic - to be used by the test suite so that valgrind can
detect leaks and memory corruptions
Other changes:
- Crash log is printed even on system that dont HAVE_BACKTRACE, i.e. in
both SIGSEGV and assert / panic
- Assertion and panic won't print registers and code around EIP (which
was useless), but will do fast memory test (which may still indicate
that the assertion was due to memory corrpution)
I had to reshuffle code in order to re-use it, so i extracted come code
into function without actually doing any changes to the code:
- logServerInfo
- logModulesInfo
- doFastMemoryTest (with the exception of it being conditional)
- dumpCodeAroundEIP
changes to the crash report on segfault:
- logRegisters is called right after the stack trace (before info) done
just in order to have more re-usable code
- stack trace skips the first two items on the stack (the crash log and
signal handler functions)
Currently, there are several types of threads/child processes of a
redis server. Sometimes we need deeply optimise the performance of
redis, so we would like to isolate threads/processes.
There were some discussion about cpu affinity cases in the issue:
https://github.com/antirez/redis/issues/2863
So implement cpu affinity setting by redis.conf in this patch, then
we can config server_cpulist/bio_cpulist/aof_rewrite_cpulist/
bgsave_cpulist by cpu list.
Examples of cpulist in redis.conf:
server_cpulist 0-7:2 means cpu affinity 0,2,4,6
bio_cpulist 1,3 means cpu affinity 1,3
aof_rewrite_cpulist 8-11 means cpu affinity 8,9,10,11
bgsave_cpulist 1,10-11 means cpu affinity 1,10,11
Test on linux/freebsd, both work fine.
Signed-off-by: zhenwei pi <pizhenwei@bytedance.com>
While playing with ACLs I noticed that acllog-max-len wasn't in the redis.conf, but was a supported config.
This PR documents and adds the directive to the redis.conf file.
When using TLS with a Redis.conf file the line for TLS reading tls-cert-file redis.crt tls-key-file redis.key is interpreted as one complete directive. I am separating this on two separate lines to improve usability so users do not get the below error.
ubuntu@ip-172-31-29-250:~/redis-6.0-rc1$ ./src/redis-server redis.conf
*** FATAL CONFIG FILE ERROR ***
Reading the configuration file, at line 145
>>> 'tls-cert-file redis.crt tls-key-file redis.key'
wrong number of arguments
ubuntu@ip-172-31-29-250:~/redis-6.0-rc1$ vi redis.conf
ubuntu@ip-172-31-29-250:~/redis-6.0-rc1$ ./src/redis-server redis.conf
23085:C 04 Mar 2020 01:58:12.631 # oO0OoO0OoO0Oo Redis is starting oO0OoO0OoO0Oo
23085:C 04 Mar 2020 01:58:12.631 # Redis version=5.9.101, bits=64, commit=00000000, modified=0, pid=23085, just started
23085:C 04 Mar 2020 01:58:12.631 # Configuration loaded
23085:M 04 Mar 2020 01:58:12.632 * Increased maximum number of open files to 10032 (it was originally set to 1024).
Because "keymiss" is "special" compared to the rest of
the notifications (Trying not to break existing apps
using the 'A' format for notifications)
Also updated redis.conf and module.c docs
Reduce default minimum effort, so that when fragmentation is just detected,
the impact on the latency will be minor.
Reduce the default maximum effort, mainly to prevent a case were a sudden
massive deletions, won't trigger an aggressive defrag that will cause latency.
When activedefrag is disabled mid-run, reset the 'running' info field, and
clear the scan cursor, so that when it'll be re-enabled, a new fresh scan will
start.
Clearing the 'running' variable is important since lowering the defragger
tunables mid-scan won't help, the defragger only considers new threshold when
a new scan starts, and during a scan it can only become more aggressive,
(when more severe fragmentation is detected), it'll never go less aggressive.
So by temporarily disabling activedefrag, one can lower th the tunables.
Removing the experimantal warning.
The directive tls-prefer-server-cipher is actually tls-prefer-server-ciphers in config.c. This results in a failed directive call shown below. This pull request adds the "s" in ciphers so that the directive is able to be properly called in config.c
ubuntu@ip-172-31-16-31:~/redis$ src/redis-server ./redis.conf
*** FATAL CONFIG FILE ERROR ***
Reading the configuration file, at line 200
>>> 'tls-prefer-server-cipher yes'
Bad directive or wrong number of arguments
This adds support for explicit configuration of a CA certs directory (in
addition to the previously supported bundle file). For redis-cli, if no
explicit CA configuration is supplied the system-wide default
configuration will be adopted.
* Introduce a connection abstraction layer for all socket operations and
integrate it across the code base.
* Provide an optional TLS connections implementation based on OpenSSL.
* Pull a newer version of hiredis with TLS support.
* Tests, redis-cli updates for TLS support.
The implementation of the diskless replication was currently diskless only on the master side.
The slave side was still storing the received rdb file to the disk before loading it back in and parsing it.
This commit adds two modes to load rdb directly from socket:
1) when-empty
2) using "swapdb"
the third mode of using diskless slave by flushdb is risky and currently not included.
other changes:
--------------
distinguish between aof configuration and state so that we can re-enable aof only when sync eventually
succeeds (and not when exiting from readSyncBulkPayload after a failed attempt)
also a CONFIG GET and INFO during rdb loading would have lied
When loading rdb from the network, don't kill the server on short read (that can be a network error)
Fix rdb check when performed on preamble AOF
tests:
run replication tests for diskless slave too
make replication test a bit more aggressive
Add test for diskless load swapdb
There are too many advantages in doing this, RDB is faster to persist,
more compact, much faster to load back. The main issues here are that
the code is less tested because this was not the old default (so we are
enabling it for the new 5.0 release), and that the AOF is no longer a
trivially parsable format from now on. However the non-preamble mode
will be supported in the future as well, if new data types will be
added.
This commit, in some parts derived from PR #3041 which is no longer
possible to merge (because the user deleted the original branch),
implements the ability of slaves to have a special configuration
preventing that they try to start a failover when the master is failing.
There are multiple reasons for wanting this, and the feautre was
requested in issue #3021 time ago.
The differences between this patch and the original PR are the
following:
1. The flag is saved/loaded on the nodes configuration.
2. The 'myself' node is now flag-aware, the flag is updated as needed
when the configuration is changed via CONFIG SET.
3. The flag name uses NOFAILOVER instead of NO_FAILOVER to be consistent
with existing NOADDR.
4. The redis.conf documentation was rewritten.
Thanks to @deep011 for the original patch.
- big keys are not defragged in one go from within the dict scan
instead they are scanned in parts after the main dict hash bucket is done.
- add latency monitor sample for defrag
- change default active-defrag-cycle-min to induce lower latency
- make active defrag start a new scan right away if needed, so it's easier
(for the test suite) to detect when it's done
- make active defrag quick the current cycle after each db / big key
- defrag some non key long term global allocations
- some refactoring for smaller functions and more reusable code
- during dict rehashing, one scan iteration of the dict, can end up scanning
one bucket in the smaller dict and many many buckets in the larger dict.
so waiting for 16 scan iterations before checking the time, may be much too long.
You can still force the logo in the normal logs.
For motivations, check issue #3112. For me the reason is that actually
the logo is nice to have in interactive sessions, but inside the logs
kinda loses its usefulness, but for the ability of users to recognize
restarts easily: for this reason the new startup sequence shows a one
liner ASCII "wave" so that there is still a bit of visual clue.
Startup logging was modified in order to log events in more obvious
ways, and to log more events. Also certain important informations are
now more easy to parse/grep since they are printed in field=value style.
The option --always-show-logo in redis.conf was added, defaulting to no.
The gist of the changes is that now, partial resynchronizations between
slaves and masters (without the need of a full resync with RDB transfer
and so forth), work in a number of cases when it was impossible
in the past. For instance:
1. When a slave is promoted to mastrer, the slaves of the old master can
partially resynchronize with the new master.
2. Chained slalves (slaves of slaves) can be moved to replicate to other
slaves or the master itsef, without requiring a full resync.
3. The master itself, after being turned into a slave, is able to
partially resynchronize with the new master, when it joins replication
again.
In order to obtain this, the following main changes were operated:
* Slaves also take a replication backlog, not just masters.
* Same stream replication for all the slaves and sub slaves. The
replication stream is identical from the top level master to its slaves
and is also the same from the slaves to their sub-slaves and so forth.
This means that if a slave is later promoted to master, it has the
same replication backlong, and can partially resynchronize with its
slaves (that were previously slaves of the old master).
* A given replication history is no longer identified by the `runid` of
a Redis node. There is instead a `replication ID` which changes every
time the instance has a new history no longer coherent with the past
one. So, for example, slaves publish the same replication history of
their master, however when they are turned into masters, they publish
a new replication ID, but still remember the old ID, so that they are
able to partially resynchronize with slaves of the old master (up to a
given offset).
* The replication protocol was slightly modified so that a new extended
+CONTINUE reply from the master is able to inform the slave of a
replication ID change.
* REPLCONF CAPA is used in order to notify masters that a slave is able
to understand the new +CONTINUE reply.
* The RDB file was extended with an auxiliary field that is able to
select a given DB after loading in the slave, so that the slave can
continue receiving the replication stream from the point it was
disconnected without requiring the master to insert "SELECT" statements.
This is useful in order to guarantee the "same stream" property, because
the slave must be able to accumulate an identical backlog.
* Slave pings to sub-slaves are now sent in a special form, when the
top-level master is disconnected, in order to don't interfer with the
replication stream. We just use out of band "\n" bytes as in other parts
of the Redis protocol.
An old design document is available here:
https://gist.github.com/antirez/ae068f95c0d084891305
However the implementation is not identical to the description because
during the work to implement it, different changes were needed in order
to make things working well.
This feature is useful, especially in deployments using Sentinel in
order to setup Redis HA, where the slave is executed with NAT or port
forwarding, so that the auto-detected port/ip addresses, as listed in
the "INFO replication" output of the master, or as provided by the
"ROLE" command, don't match the real addresses at which the slave is
reachable for connections.
An exposed Redis instance on the internet can be cause of serious
issues. Since Redis, by default, binds to all the interfaces, it is easy
to forget an instance without any protection layer, for error.
Protected mode try to address this feature in a soft way, providing a
layer of protection, but giving clues to Redis users about why the
server is not accepting connections.
When protected mode is enabeld (the default), and if there are no
minumum hints about the fact the server is properly configured (no
"bind" directive is used in order to restrict the server to certain
interfaces, nor a password is set), clients connecting from external
intefaces are refused with an error explaining what to do in order to
fix the issue.
Clients connecting from the IPv4 and IPv6 lookback interfaces are still
accepted normally, similarly Unix domain socket connections are not
restricted in any way.