As discussed in https://github.com/antirez/redis/issues/7364, it is good
to have a HELLO command variant, which does not switch the current proto
version of a redis server.
While `HELLO` will work, it introduced a certain difficulty on parsing
options of the command. We will need to offset the index of authentication
and setname option by -1.
So 0 is marked a special version meaning non-switching. And we do not
need to change the code much.
Normally IO threads should simply read data from the socket into the
buffer and attempt to parse it.
If a protocol error is detected, a reply is generated which may result
with installing a write handler which is not thread safe. This fix
delays that until the client is processed back in the main thread.
Fixes#8220
In response to large client query buffer optimization introduced in 1898e6c. The calculation of the amount of
remaining bytes we need to write to the query buffer was calculated wrong, as a result we are unnecessarily
growing the client query buffer by sdslen(c->querybuf) always. This fix corrects that behavior.
Please note the previous behavior prior to the before-mentioned change was correctly calculating the remaining
additional bytes, and this change makes that calculate to be consistent.
Useful context, the argument of size `ll` starts at qb_pos (which is now the beginning of the sds), but much of it
may have already been read from the socket, so we only need to grow the sds for the remainder of it.
Module blocked clients cache the response in a temporary client,
the reply list in this client would be affected by the recent fix
in #7202, but when the reply is later copied into the real client,
it would have bypassed all the checks for output buffer limit, which
would have resulted in both: responding with a partial response to
the client, and also not disconnecting it at all.
* Add CLIENT INFO subcommand.
The output is identical to CLIENT LIST but provides a single line for
the current client only.
* Add CLIENT LIST ID [id...].
Co-authored-by: Itamar Haber <itamar@redislabs.com>
The test creates keys with various encodings, DUMP them, corrupt the payload
and RESTORES it.
It utilizes the recently added use-exit-on-panic config to distinguish between
asserts and segfaults.
If the restore succeeds, it runs random commands on the key to attempt to
trigger a crash.
It runs in two modes, one with deep sanitation enabled and one without.
In the first one we don't expect any assertions or segfaults, in the second one
we expect assertions, but no segfaults.
We also check for leaks and invalid reads using valgrind, and if we find them
we print the commands that lead to that issue.
Changes in the code (other than the test):
- Replace a few NPD (null pointer deference) flows and division by zero with an
assertion, so that it doesn't fail the test. (since we set the server to use
`exit` rather than `abort` on assertion).
- Fix quite a lot of flows in rdb.c that could have lead to memory leaks in
RESTORE command (since it now responds with an error rather than panic)
- Add a DEBUG flag for SET-SKIP-CHECKSUM-VALIDATION so that the test don't need
to bother with faking a valid checksum
- Remove a pile of code in serverLogObjectDebugInfo which is actually unsafe to
run in the crash report (see comments in the code)
- fix a missing boundary check in lzf_decompress
test suite infra improvements:
- be able to run valgrind checks before the process terminates
- rotate log files when restarting servers
Perform full reset of all client connection states, is if the client was
disconnected and re-connected. This affects:
* MULTI state
* Watched keys
* MONITOR mode
* Pub/Sub subscription
* ACL/Authenticated state
* Client tracking state
* Cluster read-only/asking state
* RESP version (reset to 2)
* Selected database
* CLIENT REPLY state
The response is +RESET to make it easily distinguishable from other
responses.
Co-authored-by: Oran Agra <oran@redislabs.com>
Co-authored-by: Itamar Haber <itamar@redislabs.com>
Useful when you want to know through which bind address the client connected to
the server in case of multiple bind addresses.
- Adding `laddr` field to CLIENT list showing the local (bind) address.
- Adding `LADDR` option to CLIENT KILL to kill all the clients connected
to a specific local address.
- Refactoring to share code.
track and report memory used by clients argv.
this is very usaful in case clients started sending a command and didn't
complete it. in which case the first args of the command are already
trimmed from the query buffer.
in an effort to avoid cache misses and overheads while keeping track of
these, i avoid calling sdsZmallocSize and instead use the sdslen /
bulk-len which can at least give some insight into the problem.
This memory is now added to the total clients memory usage, as well as
the client list.
This commit has two aspects:
1) improve memory reporting for all the places that use sdsAllocSize to compute
memory used by a string, in this case it'll include the internal fragmentation.
2) reduce the need for realloc calls by making the sds implicitly take over
the internal fragmentation of the block it allocated.
Before this commit, we would have continued to add replies to the reply buffer even if client
output buffer limit is reached, so the used memory would keep increasing over the configured limit.
What's more, we shouldn’t write any reply to the client if it is set 'CLIENT_CLOSE_ASAP' flag
because that doesn't conform to its definition and we will close all clients flagged with
'CLIENT_CLOSE_ASAP' in ‘beforeSleep’.
Because of code execution order, before this, we may firstly write to part of the replies to
the socket before disconnecting it, but in fact, we may can’t send the full replies to clients
since OS socket buffer is limited. But this unexpected behavior makes some commands work well,
for instance ACL DELUSER, if the client deletes the current user, we need to send reply to client
and close the connection, but before, we close the client firstly and write the reply to reply
buffer. secondly, we shouldn't do this despite the fact it works well in most cases.
We add a flag 'CLIENT_CLOSE_AFTER_COMMAND' to mark clients, this flag means we will close the
client after executing commands and send all entire replies, so that we can write replies to
reply buffer during executing commands, send replies to clients, and close them later.
We also fix some implicit problems. If client output buffer limit is enforced in 'multi/exec',
all commands will be executed completely in redis and clients will not read any reply instead of
partial replies. Even more, if the client executes 'ACL deluser' the using user in 'multi/exec',
it will not read the replies after 'ACL deluser' just like before executing 'client kill' itself
in 'multi/exec'.
We added some tests for output buffer limit breach during multi-exec and using a pipeline of
many small commands rather than one with big response.
Co-authored-by: Oran Agra <oran@redislabs.com>
When all replicas waiting for a bgsave get disconnected (possibly due to output buffer limit),
It may be good to kill the bgsave child. in diskless replication it already happens, but in
disk-based, the child may still serve some purpose (for persistence).
By killing the child, we prevent it from eating COW memory in vain, and we also allow a new child fork sooner for the next full synchronization or bgsave.
We do that only if rdb persistence wasn't enabled in the configuration.
Btw, now, rdbRemoveTempFile in killRDBChild won't block server, so we can killRDBChild safely.
Redis 6.0 introduces I/O threads, it is so cool and efficient, we use C11
_Atomic to establish inter-thread synchronization without mutex. But the
compiler that must supports C11 _Atomic can compile redis code, that brings a
lot of inconvenience since some common platforms can't support by default such
as CentOS7, so we want to implement redis atomic type to make it more portable.
We have implemented our atomic variable for redis that only has 'relaxed'
operations in src/atomicvar.h, so we implement some operations with
'sequentially-consistent', just like the default behavior of C11 _Atomic that
can establish inter-thread synchronization. And we replace all uses of C11
_Atomic with redis atomic variable.
Our implementation of redis atomic variable uses C11 _Atomic, __atomic or
__sync macros if available, it supports most common platforms, and we will
detect automatically which feature we use. In Makefile we use a dummy file to
detect if the compiler supports C11 _Atomic. Now for gcc, we can compile redis
code theoretically if your gcc version is not less than 4.1.2(starts to support
__sync_xxx operations). Otherwise, we remove use mutex fallback to implement
redis atomic variable for performance and test. You will get compiling errors
if your compiler doesn't support all features of above.
For cover redis atomic variable tests, we add other CI jobs that build redis on
CentOS6 and CentOS7 and workflow daily jobs that run the tests on them.
For them, we just install gcc by default in order to cover different compiler
versions, gcc is 4.4.7 by default installation on CentOS6 and 4.8.5 on CentOS7.
We restore the feature that we can test redis with Helgrind to find data race
errors. But you need install Valgrind in the default path configuration firstly
before running your tests, since we use macros in helgrind.h to tell Helgrind
inter-thread happens-before relationship explicitly for avoiding false positives.
Please open an issue on github if you find data race errors relate to this commit.
Unrelated:
- Fix redefinition of typedef 'RedisModuleUserChangedFunc'
For some old version compilers, they will report errors or warnings, if we
re-define function type.
Rather than blindly evicting until maxmemory limit is achieved, this
update adds a time limit to eviction. While over the maxmemory limit,
eviction will process before each command AND as a timeProc when no
commands are running.
This will reduce the latency impact on many cases, especially pathological
cases like massive used memory increase during dict rehashing.
There is a risk that some other edge cases (like massive pipelined use
of MGET) could cause Redis memory usage to keep growing despite the
eviction attempts, so a new maxmemory-eviction-tenacity config is
introduced to let users mitigate that.
During long running scripts or loading RDB/AOF, we may need to do some
defragging. Since processEventsWhileBlocked is called periodically at
unknown intervals, and many cron jobs either depend on run_with_period
(including active defrag), or rely on being called at server.hz rate
(i.e. active defrag knows ho much time to run by looking at server.hz),
the whileBlockedCron may have to run a loop triggering the cron jobs in it
(currently only active defrag) several times.
Other changes:
- Adding a test for defrag during aof loading.
- Changing key-load-delay config to take negative values for fractions
of a microsecond sleep
65a3307bc (released in 6.0.6) has a side effect, when processCommand
rejects a command with pre-made shared object error string, it trims the
newlines from the end of the string. if that string is later used with
addReply, the newline will be missing, breaking the protocol, and
leaving the client hung.
It seems that the only scenario which this happens is when replying with
-LOADING to some command, and later using that reply from the CONFIG
SET command (still during loading). this will result in hung client.
Refactoring the code in order to avoid trimming these newlines from
shared string objects, and do the newline trimming only in other cases
where it's needed.
Co-authored-by: Guy Benoish <guy.benoish@redislabs.com>
During a long AOF or RDB loading, the memory stats were not updated, and
INFO would return stale data, specifically about fragmentation and RSS.
In the past some of these were sampled directly inside the INFO command,
but were moved to cron as an optimization.
This commit introduces a concept of loadingCron which should take
some of the responsibilities of serverCron.
It attempts to limit it's rate to approximately the server Hz, but may
not be very accurate.
In order to avoid too many system call, we use the cached ustime, and
also make sure to update it in both AOF loading and RDB loading inside
processEventsWhileBlocked (it seems AOF loading was missing it).
65a3307bc9 added rejectCommand which takes an robj reply and passes it
through addReplyErrorSafe to addReplyErrorLength.
The robj contains newline at it's end, but addReplyErrorSafe converts it
to spaces, and passes it to addReplyErrorLength which adds the protocol
newlines.
The result was that most error replies (like OOM) had extra two trailing
spaces in them.
The connection API may create an accepted connection object in an error
state, and callers are expected to check it before attempting to use it.
Co-authored-by: mrpre <mrpre@163.com>
In order to support the use of multi-exec in pipeline, it is important that
MULTI and EXEC are never rejected and it is easy for the client to know if the
connection is still in multi state.
It was easy to make sure MULTI and DISCARD never fail (done by previous
commits) since these only change the client state and don't do any actual
change in the server, but EXEC is a different story.
Since in the past, it was possible for clients to handle some EXEC errors and
retry the EXEC, we now can't affort to return any error on EXEC other than
EXECABORT, which now carries with it the real reason for the abort too.
Other fixes in this commit:
- Some checks that where performed at the time of queuing need to be re-
validated when EXEC runs, for instance if the transaction contains writes
commands, it needs to be aborted. there was one check that was already done
in execCommand (-READONLY), but other checks where missing: -OOM, -MISCONF,
-NOREPLICAS, -MASTERDOWN
- When a command is rejected by processCommand it was rejected with addReply,
which was not recognized as an error in case the bad command came from the
master. this will enable to count or MONITOR these errors in the future.
- make it easier for tests to create additional (non deferred) clients.
- add tests for the fixes of this commit.
the recent change in that loop (iteration rather than waiting for it to
be empty) was intended to avoid an endless loop in case some slave would
refuse to be freed.
but the lookup of the first client remained, which would have caused it
to try the first one again and again instead of moving on.
After a closer look, the Redis core devleopers all believe that this was
too fragile, caused many bugs that we didn't expect and that were very
hard to track. Better to find an alternative solution that is simpler.
We want to react a bit more aggressively if we sense that the master is
sending us some corrupted stream. By setting the protocol error we both
ensure that the replica will disconnect, and avoid caching the master so
that a full SYNC will be required. This is protective against
replication bugs.