This commit, in some parts derived from PR #3041 which is no longer
possible to merge (because the user deleted the original branch),
implements the ability of slaves to have a special configuration
preventing that they try to start a failover when the master is failing.
There are multiple reasons for wanting this, and the feautre was
requested in issue #3021 time ago.
The differences between this patch and the original PR are the
following:
1. The flag is saved/loaded on the nodes configuration.
2. The 'myself' node is now flag-aware, the flag is updated as needed
when the configuration is changed via CONFIG SET.
3. The flag name uses NOFAILOVER instead of NO_FAILOVER to be consistent
with existing NOADDR.
4. The redis.conf documentation was rewritten.
Thanks to @deep011 for the original patch.
- big keys are not defragged in one go from within the dict scan
instead they are scanned in parts after the main dict hash bucket is done.
- add latency monitor sample for defrag
- change default active-defrag-cycle-min to induce lower latency
- make active defrag start a new scan right away if needed, so it's easier
(for the test suite) to detect when it's done
- make active defrag quick the current cycle after each db / big key
- defrag some non key long term global allocations
- some refactoring for smaller functions and more reusable code
- during dict rehashing, one scan iteration of the dict, can end up scanning
one bucket in the smaller dict and many many buckets in the larger dict.
so waiting for 16 scan iterations before checking the time, may be much too long.
The main change introduced by this commit is pretending that help
arrays are more text than code, thus indenting them at level 0. This
improves readability, and is an old practice when defining arrays of
C strings describing text.
Additionally a few useless return statements are removed, and the HELP
subcommand capitalized when printed to the user.
This change attempts to switch to an hash function which mitigates
the effects of the HashDoS attack (denial of service attack trying
to force data structures to worst case behavior) while at the same time
providing Redis with an hash function that does not expect the input
data to be word aligned, a condition no longer true now that sds.c
strings have a varialbe length header.
Note that it is possible sometimes that even using an hash function
for which collisions cannot be generated without knowing the seed,
special implementation details or the exposure of the seed in an
indirect way (for example the ability to add elements to a Set and
check the return in which Redis returns them with SMEMBERS) may
make the attacker's life simpler in the process of trying to guess
the correct seed, however the next step would be to switch to a
log(N) data structure when too many items in a single bucket are
detected: this seems like an overkill in the case of Redis.
SPEED REGRESION TESTS:
In order to verify that switching from MurmurHash to SipHash had
no impact on speed, a set of benchmarks involving fast insertion
of 5 million of keys were performed.
The result shows Redis with SipHash in high pipelining conditions
to be about 4% slower compared to using the previous hash function.
However this could partially be related to the fact that the current
implementation does not attempt to hash whole words at a time but
reads single bytes, in order to have an output which is endian-netural
and at the same time working on systems where unaligned memory accesses
are a problem.
Further X86 specific optimizations should be tested, the function
may easily get at the same level of MurMurHash2 if a few optimizations
are performed.
You can still force the logo in the normal logs.
For motivations, check issue #3112. For me the reason is that actually
the logo is nice to have in interactive sessions, but inside the logs
kinda loses its usefulness, but for the ability of users to recognize
restarts easily: for this reason the new startup sequence shows a one
liner ASCII "wave" so that there is still a bit of visual clue.
Startup logging was modified in order to log events in more obvious
ways, and to log more events. Also certain important informations are
now more easy to parse/grep since they are printed in field=value style.
The option --always-show-logo in redis.conf was added, defaulting to no.
The new algorithm provides the same speed with a smaller error for
cardinalities in the range 0-100k. Before switching, the new and old
algorithm behavior was studied in details in the context of
issue #3677. You can find a few graphs and motivations there.
This commit fixes a vunlerability reported by Cory Duplantis
of Cisco Talos, see TALOS-2016-0206 for reference.
CONFIG SET client-output-buffer-limit accepts as client class "master"
which is actually only used to implement CLIENT KILL. The "master" class
has ID 3. What happens is that the global structure:
server.client_obuf_limits[class]
Is accessed with class = 3. However it is a 3 elements array, so writing
the 4th element means to write up to 24 bytes of memory *after* the end
of the array, since the structure is defined as:
typedef struct clientBufferLimitsConfig {
unsigned long long hard_limit_bytes;
unsigned long long soft_limit_bytes;
time_t soft_limit_seconds;
} clientBufferLimitsConfig;
EVALUATION OF IMPACT:
Checking what's past the boundaries of the array in the global
'server' structure, we find AOF state fields:
clientBufferLimitsConfig client_obuf_limits[CLIENT_TYPE_OBUF_COUNT];
/* AOF persistence */
int aof_state; /* AOF_(ON|OFF|WAIT_REWRITE) */
int aof_fsync; /* Kind of fsync() policy */
char *aof_filename; /* Name of the AOF file */
int aof_no_fsync_on_rewrite; /* Don't fsync if a rewrite is in prog. */
int aof_rewrite_perc; /* Rewrite AOF if % growth is > M and... */
off_t aof_rewrite_min_size; /* the AOF file is at least N bytes. */
off_t aof_rewrite_base_size; /* AOF size on latest startup or rewrite. */
off_t aof_current_size; /* AOF current size. */
Writing to most of these fields should be harmless and only cause problems in
Redis persistence that should not escalate to security problems.
However unfortunately writing to "aof_filename" could be potentially a
security issue depending on the access pattern.
Searching for "aof.filename" accesses in the source code returns many different
usages of the field, including using it as input for open(), logging to the
Redis log file or syslog, and calling the rename() syscall.
It looks possible that attacks could lead at least to informations
disclosure of the state and data inside Redis. However note that the
attacker must already have access to the server. But, worse than that,
it looks possible that being able to change the AOF filename can be used
to mount more powerful attacks: like overwriting random files with AOF
data (easily a potential security issue as demostrated here:
http://antirez.com/news/96), or even more subtle attacks where the
AOF filename is changed to a path were a malicious AOF file is loaded
in order to exploit other potential issues when the AOF parser is fed
with untrusted input (no known issue known currently).
The fix checks the places where the 'master' class is specifiedf in
order to access configuration data structures, and return an error in
this cases.
WHO IS AT RISK?
The "master" client class was introduced in Redis in Jul 28 2015.
Every Redis instance released past this date is not vulnerable
while all the releases after this date are. Notably:
Redis 3.0.x is NOT vunlerable.
Redis 3.2.x IS vulnerable.
Redis unstable is vulnerable.
In order for the instance to be at risk, at least one of the following
conditions must be true:
1. The attacker can access Redis remotely and is able to send
the CONFIG SET command (often banned in managed Redis instances).
2. The attacker is able to control the "redis.conf" file and
can wait or trigger a server restart.
The problem was fixed 26th September 2016 in all the releases affected.
This feature is useful, especially in deployments using Sentinel in
order to setup Redis HA, where the slave is executed with NAT or port
forwarding, so that the auto-detected port/ip addresses, as listed in
the "INFO replication" output of the master, or as provided by the
"ROLE" command, don't match the real addresses at which the slave is
reachable for connections.
I've renamed maxmemoryToString to evictPolicyToString since that is
more accurate (and easier to mentally connect with the correct data), as
well as updated the function to user server.maxmemory_policy rather than
server.maxmemory. Now with a default config it is actually returning
the correct policy rather than volatile-lru.
An exposed Redis instance on the internet can be cause of serious
issues. Since Redis, by default, binds to all the interfaces, it is easy
to forget an instance without any protection layer, for error.
Protected mode try to address this feature in a soft way, providing a
layer of protection, but giving clues to Redis users about why the
server is not accepting connections.
When protected mode is enabeld (the default), and if there are no
minumum hints about the fact the server is properly configured (no
"bind" directive is used in order to restrict the server to certain
interfaces, nor a password is set), clients connecting from external
intefaces are refused with an error explaining what to do in order to
fix the issue.
Clients connecting from the IPv4 and IPv6 lookback interfaces are still
accepted normally, similarly Unix domain socket connections are not
restricted in any way.
Not perfect since The Solution IMHO is to have a DSL with a table of
configuration functions with type, limits, and aux functions to handle
the odd ones. However this hacky macro solution is already better and
forces to put limits in the range of numerical fields.
More field types to be refactored in the next commits hopefully.
Adds configuration option 'supervised [no | upstart | systemd | auto]'
Also removed 'bzero' from the previous implementation because it's 2015.
(We could actually statically initialize those structs, but clang
throws an invalid warning when we try, so it looks bad even though it
isn't bad.)
Fixes#2264
This removes:
- list-max-ziplist-entries
- list-max-ziplist-value
This adds:
- list-max-ziplist-size
- list-compress-depth
Also updates config file with new sections and updates
tests to use quicklist settings instead of old list settings.
The original implementation was modified in order to allow to
selectively announce a different IP or port, and to rewrite the two
options in the config file after a rewrite.
Because of output buffer limits Redis internals had this idea of type of
clients: normal, pubsub, slave. It is possible to set different output
buffer limits for the three kinds of clients.
However all the macros and API were named after output buffer limit
classes, while the idea of a client type is a generic one that can be
reused.
This commit does two things:
1) Rename the API and defines with more general names.
2) Change the class of clients executing the MONITOR command from "slave"
to "normal".
"2" is a good idea because you want to have very special settings for
slaves, that are not a good idea for MONITOR clients that are instead
normal clients even if they are conceptually slave-alike (since it is a
push protocol).
The backward-compatibility breakage resulting from "2" is considered to
be minimal to care, since MONITOR is a debugging command, and because
anyway this change is not going to break the format or the behavior, but
just when a connection is closed on big output buffer issues.
Everywhere in the Redis code base, maxclients is treated
as an int with (int)maxclients or `maxclients = atoi(source)`,
so let's make maxclients an int.
This fixes a bug where someone could specify a negative maxclients
on startup and it would work (as well as set maxclients very high)
because:
unsigned int maxclients;
char *update = "-300";
maxclients = atoi(update);
if (maxclients < 1) goto fail;
But, (maxclients < 1) can only catch the case when maxclients
is exactly 0. maxclients happily sets itself to -300, which isn't
-300, but rather 4294966996, which isn't < 1, so... everything
"worked."
maxclients config parsing checks for the case of < 1, but maxclients
CONFIG SET parsing was checking for case of < 0 (allowing
maxclients to be set to 0). CONFIG SET parsing is now updated to
match config parsing of < 1.
It's tempting to add a MINIMUM_CLIENTS define, but... I didn't.
These changes were inspired by antirez#356, but this doesn't
fix that issue.
This value needs to be set to zero (in addition to
stat_numcommands) or else people may see
a negative operations per second count after they
run CONFIG RESETSTAT.
Fixesantirez/redis#1577
In high RPS environments, the default listen backlog is not sufficient, so
giving users the power to configure it is the right approach, especially
since it requires only minor modifications to the code.
There were two problems with the implementation.
1) "save" was not correctly processed when no save point was configured,
as reported in issue #1416.
2) The way the code checked if an option existed in the "processed"
dictionary was wrong, as we add the element with as a key associated
with a NULL value, so dictFetchValue() can't be used to check for
existance, but dictFind() must be used, that returns NULL only if the
entry does not exist at all.
With this commit options not explicitly rewritten by CONFIG REWRITE are
not touched at all. These include new options that may not have support
for REWRITE, and other special cases like rename-command and include.
At the end of the file, CONFIG REWRITE adds a comment line that:
# Generated by CONFIG REWRITE
Followed by the additional config options required. However this was
added again and again at every rewrite in praticular conditions (when a
given set of options change in a given time during the time).
Now if it was alrady encountered, it is not added a second time.
This is especially important for Sentinel that rewrites the config at
every state change.