When a BGSAVE fails, Redis used to flood itself trying to BGSAVE at
every next cron call, that is either 10 or 100 times per second
depending on configuration and server version.
This commit does not allow a new automatic BGSAVE attempt to be
performed before a few seconds delay (currently 5).
This avoids both the auto-flood problem and filling the disk with
logs at a serious rate.
The five seconds limit, considering a log entry of 200 bytes, will use
less than 4 MB of disk space per day that is reasonable, the sysadmin
should notice before of catastrofic events especially since by default
Redis will stop serving write queries after the first failed BGSAVE.
This fixes issue #849
This fixes cases where the RDB file does exist but can't be accessed for
any reason. For instance, when the Redis process doesn't have enough
permissions on the file.
This commit allows Redis to set a process name that includes the binding
address and the port number in order to make operations simpler.
Redis children processes doing AOF rewrites or RDB saving change the
name into redis-aof-rewrite and redis-rdb-bgsave respectively.
This in general makes harder to kill the wrong process because of an
error and makes simpler to identify saving children.
This feature was suggested by Arnaud GRANAL in the Redis Google Group,
Arnaud also pointed me to the setproctitle.c implementation includeed in
this commit.
This feature should work on all the Linux, OSX, and all the three major
BSD systems.
This commit fixes issue #875 that was caused by the following events:
1) There is an active child doing BGSAVE.
2) flushall is called (or any other condition that makes Redis killing
the saving child process).
3) An error is sensed by Redis as the child exited with an error (killed
by a singal), that stops accepting write commands until a BGSAVE happens
to be executed with success.
Whitelisting SIGUSR1 and making sure Redis always uses this signal in
order to kill its own children fixes the issue.
Finally Redis is able to report the amount of memory used by
copy-on-write while saving an RDB or writing an AOF file in background.
Note that this information is currently only logged (at NOTICE level)
and not shown in INFO because this is less trivial (but surely doable
with some minor form of interprocess communication).
The reason we can't capture this information on the parent before we
call wait3() is that the Linux kernel will release the child memory
ASAP, and only retain the minimal state for the process that is useful
to report the child termination to the parent.
The COW size is obtained by summing all the Private_Dirty fields found
in the "smap" file inside the proc filesystem for the process.
All this is Linux specific and is not available on other systems.
Improved comments to make clear that rdbLoadType() just loads a
general TYPE in the context of RDB that can be an object type or an
expire type, end-of-file, and so forth.
While rdbLoadObjectType() enforces that the type is a valid Object Type
otherwise it returns -1.
The 'persistence' section of INFO output now contains additional four
fields related to RDB and AOF persistence:
rdb_last_bgsave_time_sec Duration of latest BGSAVE in sec.
rdb_current_bgsave_time_sec Duration of current BGSAVE in sec.
aof_last_rewrite_time_sec Duration of latest AOF rewrite in sec.
aof_current_rewrite_time_sec Duration of current AOF rewrite in sec.
The 'current' fields are set to -1 if a BGSAVE / AOF rewrite is not in
progress. The 'last' fileds are set to -1 if no previous BGSAVE / AOF
rewrites were performed.
Additionally a few fields in the persistence section were renamed for
consistency:
changes_since_last_save -> rdb_changes_since_last_save
bgsave_in_progress -> rdb_bgsave_in_progress
last_save_time -> rdb_last_save_time
last_bgsave_status -> rdb_last_bgsave_status
bgrewriteaof_in_progress -> aof_rewrite_in_progress
bgrewriteaof_scheduled -> aof_rewrite_scheduled
After the renaming, fields in the persistence section start with rdb_ or
aof_ prefix depending on the persistence method they describe.
The field 'loading' and related fields are not prefixed because they are
unique for both the persistence methods.
Redis now refuses accepting write queries if RDB persistence is
configured, but RDB snapshots can't be generated for some reason.
The status of the latest background save operation is now exposed
in the INFO output as well. This fixes issue #90.
The cron is responsible for expiring keys. When keys are expired at
load time, it is possible that the snapshot of a master node gets
modified. This can in turn lead to inconsistencies in the data set.
A more concrete example of this behavior follows. A user reported a
slave that would show an monotonically increase input buffer length,
shortly after completing a SYNC. Also, `INFO` output showed a single
blocked client, which could only be the master link. Investigation
showed that indeed the `BRPOP` command was fed by the master. This
command can only end up in the stream of write operations when it did
NOT block, and effectively executed `RPOP`. However, when the key
involved in the `BRPOP` is expired BEFORE the command is executed, the
client executing it will block. The client in this case, is the master
link.
Now the rdbSave* functions return the number of bytes written (or
required to write) in serializing a Redis object, writing to /dev/null
and using ftell (which doesn't work on FreeBSD) isn't needed anymore.
networking related stuff moved into networking.c
moved more code
more work on layout of source code
SDS instantaneuos memory saving. By Pieter and Salvatore at VMware ;)
cleanly compiling again after the first split, now splitting it in more C files
moving more things around... work in progress
split replication code
splitting more
Sets split
Hash split
replication split
even more splitting
more splitting
minor change