The new function is used when we want to normalize an IP address without
performing a DNS lookup if the string to resolve is not a valid IP.
This is useful every time only IPs are valid inputs or when we want to
skip DNS resolution that is slow during runtime operations if we are
required to block.
Masters not understanding REPLCONF ACK will reply with errors to our
requests causing a number of possible issues.
This commit detects a global replication offest set to -1 at the end of
the replication, and marks the client representing the master with the
REDIS_PRE_PSYNC flag.
Note that this flag was called REDIS_PRE_PSYNC_SLAVE but now it is just
REDIS_PRE_PSYNC as it is used for both slaves and masters starting with
this commit.
This commit fixes issue #1488.
Now the socket is closed if anetNonBlock() fails, and in general the
code structure makes it harder to introduce this kind of bugs in the
future.
Reference: pull request #1059.
There were two problems with the implementation.
1) "save" was not correctly processed when no save point was configured,
as reported in issue #1416.
2) The way the code checked if an option existed in the "processed"
dictionary was wrong, as we add the element with as a key associated
with a NULL value, so dictFetchValue() can't be used to check for
existance, but dictFind() must be used, that returns NULL only if the
entry does not exist at all.
Currently replication offsets could be used into a limited way in order
to understand, out of a set of slaves, what is the one with the most
updated data. For example this comparison is possible of N slaves
were replicating all with the same master.
However the replication offset was not transferred from master to slaves
(that are later promoted as masters) in any way, so for instance if
there were three instances A, B, C, with A master and B and C
replication from A, the following could happen:
C disconnects from A.
B is turned into master.
A is switched to master of B.
B receives some write.
In this context there was no way to compare the offset of A and C,
because B would use its own local master replication offset as
replication offset to initialize the replication with A.
With this commit what happens is that when B is turned into master it
inherits the replication offset from A, making A and C comparable.
In the above case assuming no inconsistencies are created during the
disconnection and failover process, A will show to have a replication
offset greater than C.
Note that this does not mean offsets are always comparable to understand
what is, in a set of instances, since in more complex examples the
replica with the higher replication offset could be partitioned away
when picking the instance to elect as new master. However this in
general improves the ability of a system to try to pick a good replica
to promote to master.
When the configured node timeout is very small, the data validity time
(maximum data age for a slave to try a failover) is too little (ten
times the configured node timeout) when the replication link with the
master is mostly idle. In this case we'll receive some data from the
master only every server.repl_ping_slave_period to refresh the last
interaction with the master.
This commit adds to the max data validity time the slave ping period to
avoid this problem of slaves sensing too old data without a good reason.
However this max data validity time is likely a setting that should be
configurable by the Redis Cluster user in a way completely independent
from the node timeout.
This commit makes it simple to start an handshake with a specific node
address, and uses this in order to detect a node IP change and start a
new handshake in order to fix the IP if possible.
As specified in the Redis Cluster specification, when a node can reach
the majority again after a period in which it was partitioend away with
the minorty of masters, wait some time before accepting queries, to
provide a reasonable amount of time for other nodes to upgrade its
configuration.
This lowers the probabilities of both a client and a master with not
updated configuration to rejoin the cluster at the same time, with a
stale master accepting writes.
With this commit options not explicitly rewritten by CONFIG REWRITE are
not touched at all. These include new options that may not have support
for REWRITE, and other special cases like rename-command and include.
The value was otherwise undefined, so next time the node was promoted
again from slave to master, adding a slave to the list of slaves
would likely crash the server or result into undefined behavior.
Later this should be configurable from the command line but at least now
we use something more appropriate for our use case compared to the
redis-rb default timeout.
The bug could be easily triggered by:
SADD foo a b c 1 2 3 4 5 6
SDIFF foo foo
When the key was the same in two sets, an unsafe iterator was used to
check existence of elements in the same set we were iterating.
Usually this would just result into a wrong output, however with the
dict.c API misuse protection we have in place, the result was actually
an assertion failed that was triggered by the CI test, while creating
random datasets for the "MASTER and SLAVE consistency" test.
When a slave was disconnected from its master the replication offset was
reported as -1. Now it is reported as the replication offset of the
previous master, so that failover can be performed using this value in
order to try to select a slave with more processed data from a set of
slaves of the old master.