When master send commands, there is no need for the slave to reply.
Redis used to queue the reply in the output buffer and discard the reply
later, this is a waste of work and it is not clear why it was this way
(I sincerely don't remember).
This commit changes it in order to don't queue the reply at all.
All tests passing.
SUSv3 says that:
The useconds argument shall be less than one million. If the value of
useconds is 0, then the call has no effect.
and actually NetBSD's implementation rejects such a value with EINVAL.
use nanosleep which has no such a limitation instead.
NetBSD-current's libc has a function named popcount.
hiding these extensions using feature macros is not possible because
redis uses other extensions covered by the same feature macro.
eg. inet_aton
Also the logfile option was modified to always have an explicit value
and to log to stdout when an empty string is used as log file.
Previously there was special handling of the string "stdout" that set
the logfile to NULL, this always required some special handling.
This reverts commit 2c75f2cf1a.
After further analysis, it is very unlikely that we'll raise the
string size limit to > 512MB, and at the same time such big strings
will be used in 32 bit systems.
Better to revert to size_t so that 32 bit processors will not be
forced to use a 64 bit counter in normal operations, that is currently
completely useless.
When the PONG delay is half the cluster node timeout, the link gets
disconnected (and later automatically reconnected) in order to ensure
that it's not just a dead connection issue.
However this operation is only performed if the link is old enough, in
order to avoid to disconnect the same link again and again (and among
the other problems, never receive the PONG because of that).
Note: when the link is reconnected, the 'ping_sent' field is not updated
even if a new ping is sent using the new connection, so we can still
reliably detect a node ping timeout.
This is just to make the code exactly like the above instance used for
requirepass. No actual change nor the original code violated the Redis
coding style.
There was a race condition in the AOF rewrite code that, with bad enough
timing, could cause a volatile key just about to expire to be turned
into a non-volatile key. The bug was never reported to cause actualy
issues, but was found analytically by an user in the Redis mailing list:
https://groups.google.com/forum/?fromgroups=#!topic/redis-db/Kvh2FAGK4Uk
This commit fixes issue #1079.
Tilt mode was too aggressive (not processing INFO output), this
resulted in a few problems:
1) Redirections were not followed when in tilt mode. This opened a
window to misinform clients about the current master when a Sentinel
was in tilt mode and a fail over happened during the time it was not
able to update the state.
2) It was possible for a Sentinel exiting tilt mode to detect a false
fail over start, if a slave rebooted with a wrong configuration
about at the same time. This used to happen since in tilt mode we
lose the information that the runid changed (reboot).
Now instead the Sentinel in tilt mode will still remove the instance
from the list of slaves if it changes state AND runid at the same
time.
Both are edge conditions but the changes should overall improve the
reliability of Sentinel.
We used to always turn a master into a slave if the DEMOTE flag was set,
as this was a resurrecting master instance.
However the following race condition is possible for a Sentinel that
got partitioned or internal issues (tilt mode), and was not able to
refresh the state in the meantime:
1) Sentinel X is running, master is instance "A".
3) "A" fails, sentinels will promote slave "B" as master.
2) Sentinel X goes down because of a network partition.
4) "A" returns available, Sentinels will demote it as a slave.
5) "B" fails, other Sentinels will promote slave "A" as master.
6) At this point Sentinel X comes back.
When "X" comes back he thinks that:
"B" is the master.
"A" is the slave to demote.
We want to avoid that Sentinel "X" will demote "A" into a slave.
We also want that Sentinel "X" will detect that the conditions changed
and will reconfigure itself to monitor the right master.
There are two main ways for the Sentinel to reconfigure itself after
this event:
1) If "B" is reachable and already configured as a slave by other
sentinels, "X" will perform a redirection to "A".
2) If there are not the conditions to demote "A", the fact that "A"
reports to be a master will trigger a failover detection in "X", that
will end into a reconfiguraiton to monitor "A".
However if the Sentinel was not reachable, its state may not be updated,
so in case it titled, or was partiitoned from the master instance of the
slave to demote, the new implementation waits some time (enough to
guarantee we can detect the new INFO, and new DOWN conditions).
If after some time still there are not the right condiitons to demote
the instance, the DEMOTE flag is cleared.