Another leak was fixed in the case of syntax error by restructuring the
allocation strategy for the two dynamic vectors.
We also make sure to always close the cached socket on I/O errors so that
all the I/O errors are handled the same, even if we had a previously
queued error of a different kind from the destination server.
Thanks to Kevin McGehee. Related to issue #3016.
In issue #3016 Kevin McGehee identified multiple very serious issues in
the new implementation of MIGRATE. This commit attempts to restructure
the code in oder to avoid mistakes, an analysis of the new
implementation is in progress in order to check for possible edge cases.
With this commit we preserve the list of nodes that have .slaveof set
to the node, even when the node is turned into a slave, and make sure to
fix the .slaveof pointers to NULL when a node is freed from memory,
regardless of the fact it's a slave or a master.
Basically we try to remember the logical master in the current
configuration even if the logical master advertised it as a slave
already. However we still remember the associations, so that when a node
is freed we can fix them.
This should fix issue #3002.
Sometimes during "fixes" we have to setup a new configuration and assign
slots to nodes. With BUMPEPOCH we can make sure the new configuration of
the node will win if there are conflicting configurations (for example
another node is *also* claiming the same slot because the cluster is
totally messed up).
This fix, provided by Paul Kulchenko (@pkulchenko), allows the Lua
scripting engine to evaluate statements with a trailing comment like the
following one:
EVAL "print() --comment" 0
Lua can't parse the above if the string does not end with a newline, so
now a final newline is always added automatically. This does not change
the SHA1 of scripts since the SHA1 is computed on the body we pass to
EVAL, without the other code we add to register the function.
Close#2951.
Extend the MIGRATE extra freedom to be able to be called in the context
of the local slot, anytime there is a slot open in one or the other
direction (importing or migrating). This is useful for redis-trib to fix
the cluster when it has in an odd state.
Thix fix allows "redis-trib fix" to make its work in certain cases where
previously an error was reported.
Previously it was possible to activate a debugging session only using
the --ldb option in redis-cli. Now calling SCRIPT DEBUG can also
activate the debugging mode without putting the redis-cli in a
desynchronized state.
Related to #2952.
Example of offending code:
> script debug yes
OK
> eval "local a = {1} a[1] = a\nprint(a)" 0
1) * Stopped at 1, stop reason = step over
2) -> 1 local a = {1} a[1] = a
> next
1) * Stopped at 2, stop reason = step over
2) -> 2 print(a)
> print
... server crash ...
Close#2955.
An exposed Redis instance on the internet can be cause of serious
issues. Since Redis, by default, binds to all the interfaces, it is easy
to forget an instance without any protection layer, for error.
Protected mode try to address this feature in a soft way, providing a
layer of protection, but giving clues to Redis users about why the
server is not accepting connections.
When protected mode is enabeld (the default), and if there are no
minumum hints about the fact the server is properly configured (no
"bind" directive is used in order to restrict the server to certain
interfaces, nor a password is set), clients connecting from external
intefaces are refused with an error explaining what to do in order to
fix the issue.
Clients connecting from the IPv4 and IPv6 lookback interfaces are still
accepted normally, similarly Unix domain socket connections are not
restricted in any way.
For non existing keys, we don't want to send -ASK redirections to
MIGRATE, since when moving slots from the migrating node to the
importing node, we want just to ignore keys that are no longer there.
They may be expired or deleted between the GETKEYSINSLOT call and the
MIGRATE call. Otherwise this causes an error during migrations with
redis-trib (or equivalent cluster management tools).
It's a key invariant that when AOF is enabled, after the cluster
reshards, a crash-recovery event causes all the keys to be still fine
with the expected logical content. Now this is part of unit 04.
In issue #2948 a crash was reported in processCommand(). Later Oran Agra
(@oranagra) traced the bug (in private chat) in the following sequence
of events:
1. Some maxmemory is set.
2. The slave is the currently active client and is executing PING or
REPLCONF or whatever a slave can send to its master.
3. freeMemoryIfNeeded() is called since maxmemory is set.
4. flushSlavesOutputBuffers() is called by freeMemoryIfNeeded().
5. During slaves buffers flush, a write error could be encoutered in
writeToClient() or sendReplyToClient() depending on the version of
Redis. This will trigger freeClient() against the currently active
client, so a segmentation fault will likely happen in
processCommand() immediately after the call to freeMemoryIfNeeded().
There are different possible fixes:
1. Add flags to writeToClient() (recent versions code base) so that
we can ignore the write errors, and use this flag in
flushSlavesOutputBuffers(). However this is not simple to do in older
versions of Redis.
2. Use freeClientAsync() during write errors. This works but changes the
current behavior of releasing clients ASAP when possible. Normally
we write to clients during the normal event loop processing, in the
writable client, where there is no active client, so no care must be
taken.
3. The fix of this commit: to detect that the current client is no
longer valid. This fix is a bit "ad-hoc", but works across all the
versions and has the advantage of not changing the remaining
behavior. Only alters what happens during this race condition,
hopefully.
The old test, designed to do a transformation on the bits that was
invertible, in order to avoid touching the original memory content, was
not effective as it was redis-server --test-memory. The former often
reported OK while the latter was able to spot the error.
So the test was substituted with one that may perform better, however
the new one must backup the memory tested, so it tests memory in small
pieces. This limits the effectiveness because of the CPU caches. However
some attempt is made in order to trash the CPU cache between the fill
and the check stages, but not for the addressing test unfortunately.
We'll see if this test will be able to find errors where the old failed.