An exposed Redis instance on the internet can be cause of serious
issues. Since Redis, by default, binds to all the interfaces, it is easy
to forget an instance without any protection layer, for error.
Protected mode try to address this feature in a soft way, providing a
layer of protection, but giving clues to Redis users about why the
server is not accepting connections.
When protected mode is enabeld (the default), and if there are no
minumum hints about the fact the server is properly configured (no
"bind" directive is used in order to restrict the server to certain
interfaces, nor a password is set), clients connecting from external
intefaces are refused with an error explaining what to do in order to
fix the issue.
Clients connecting from the IPv4 and IPv6 lookback interfaces are still
accepted normally, similarly Unix domain socket connections are not
restricted in any way.
We need to process replies after errors in order to delete keys
successfully transferred. Also argument rewriting was fixed since
it was broken in several ways. Now a fresh argument vector is created
and set if we are acknowledged of at least one key.
The old version only flushed data to slaves if there were strings
pending in the client->reply list. Now also static buffers are flushed.
Does not help to free memory (which is the only use we have right now in
the fuction), but is more correct conceptually, and may be used in
other contexts.
Sometimes it can be useful for clients to completely disable replies
from the Redis server. For example when the client sends fire and forget
commands or performs a mass loading of data, or in caching contexts
where new data is streamed constantly. In such contexts to use server
time and bandwidth in order to send back replies to clients, which are
going to be ignored, is a shame.
Multiple mechanisms are possible to implement such a feature. For
example it could be a feature of MULTI/EXEC, or a command prefix
such as "NOREPLY SADD myset foo", or a different mechanism that allows
to switch on/off requests using the CLIENT command.
The MULTI/EXEC approach has the problem that transactions are not
strictly part of the no-reply semantics, and if we want to insert a lot
of data in a bulk way, creating a huge MULTI/EXEC transaction in the
server memory is bad.
The prefix is the best in this specific use case since it does not allow
desynchronizations, and is pretty clear semantically. However Redis
internals and client libraries are not prepared to handle this
currently.
So the implementation uses the CLIENT command, providing a new REPLY
subcommand with three options:
CLIENT REPLY OFF disables the replies, and does not reply itself.
CLIENT REPLY ON re-enables the replies, replying +OK.
CLIENT REPLY SKIP only discards the reply of the next command, and
like OFF does not reply anything itself.
The reason to add the SKIP command is that it allows to have an easy
way to send conceptually "single" commands that don't need a reply
as the sum of two pipelined commands:
CLIENT REPLY SKIP
SET key value
Note that CLIENT REPLY ON replies with +OK so it should be used when
sending multiple commands that don't need a reply. However since it
replies with +OK the client can check that the connection is still
active and all the previous commands were received.
This is currently just into Redis "unstable" so the proposal can be
modified or abandoned based on users inputs.
After the introduction of the list with clients with pending writes, to
process clients incrementally outside of the event loop we also need to
process the pending writes list.
Talking with @oranagra we had to reason a little bit to understand if
this function could ever flush the output buffers of the wrong slaves,
having online state but actually not being ready to receive writes
before the first ACK is received from them (this happens with diskless
replication).
Next time we'll just read this comment.
Add the concept of slaves capabilities to Redis, the slave now presents
to the Redis master with a set of capabilities in the form:
REPLCONF capa SOMECAPA capa OTHERCAPA ...
This has the effect of setting slave->slave_capa with the corresponding
SLAVE_CAPA macros that the master can test later to understand if it
the slave will understand certain formats and protocols of the
replication process. This makes it much simpler to introduce new
replication capabilities in the future in a way that don't break old
slaves or masters.
This patch was designed and implemented together with Oran Agra
(@oranagra).
1. We no longer use a fake client but just rewriting.
2. We group all the inserts into a single ZADD dispatch (big speed win).
3. As a side effect of the correct implementation, replication works.
4. The return value of the command is now correct.
When we fail to setup the write handler it does not make sense to take
the client around, it is missing writes: whatever is a client or a slave
anyway the connection should terminated ASAP.
Moreover what the function does exactly with its return value, and in
which case the write handler is installed on the socket, was not clear,
so the functions comment are improved to make the goals of the function
more obvious.
Also related to #2485.
master was closing the connection if the RDB transfer took long time.
and also sent PINGs to the slave before it got the initial ACK, in which case the slave wouldn't be able to find the EOF marker.
1. No need to set btype in processUnblockedClients(), since clients
flagged REDIS_UNBLOCKED should have it already cleared.
2. When putting clients in the unblocked clients list, clientsArePaused()
should flag them with REDIS_UNBLOCKED. Not strictly needed with the
current code but is more coherent.
When the list of unblocked clients were processed, btype was set to
blocking type none, but the client remained flagged with REDIS_BLOCKED.
When timeout is reached (or when the client disconnects), unblocking it
will trigger an assertion.
There is no need to process pending requests from blocked clients, so
now clientsArePaused() just avoid touching blocked clients.
Close#2467.
read() and write() return ssize_t (signed long), not int.
For other offsets, we can use the unsigned size_t type instead
of a signed offset (since our replication offsets and buffer
positions are never negative).
Track bandwidth used by clients and replication (but diskless
replication is not tracked since the actual transfer happens in the
child process).
This includes a refactoring that makes tracking new instantaneous
metrics simpler.