the test was misleading because the module would actually woke up on a wrong type and
re-blocked, while the test name suggests the module doesn't not wake up at all on a wrong type..
i changed the name of the test + added verification that indeed the module wakes up and gets
re-blocked after it understand it's the wrong type
This was a regression from #7625 (only in 6.2 RC2).
This makes it possible again to implement blocking list and zset
commands using the modules API.
This commit also includes a test case for the reverse: A module
unblocks a client blocked on BLPOP by inserting elements using
RedisModule_ListPush(). This already works, but it was untested.
In the distant history there was only the read flag for commands, and whatever
command that didn't have the read flag was a write one.
Then we added the write flag, but some portions of the code still used !read
Also some commands that don't work on the keyspace at all, still have the read
flag.
Changes in this commit:
1. remove the read-only flag from TIME, ECHO, ROLE and LASTSAVE
2. EXEC command used to decides if it should propagate a MULTI by looking at
the command flags (!read & !admin).
When i was about to change it to look at the write flag instead, i realized
that this would cause it not to propagate a MULTI for PUBLISH, EVAL, and
SCRIPT, all 3 are not marked as either a read command or a write one (as
they should), but all 3 are calling forceCommandPropagation.
So instead of introducing a new flag to denote a command that "writes" but
not into the keyspace, and still needs propagation, i decided to rely on
the forceCommandPropagation, and just fix the code to propagate MULTI when
needed rather than depending on the command flags at all.
The implication of my change then is that now it won't decide to propagate
MULTI when it sees one of these: SELECT, PING, INFO, COMMAND, TIME and
other commands which are neither read nor write.
3. Changing getNodeByQuery and clusterRedirectBlockedClientIfNeeded in
cluster.c to look at !write rather than read flag.
This should have no implications, since these code paths are only reachable
for commands which access keys, and these are always marked as either read
or write.
This commit improve MULTI propagation tests, for modules and a bunch of
other special cases, all of which used to pass already before that commit.
the only one that test change that uncovered a change of behavior is the
one that DELs a non-existing key, it used to propagate an empty
multi-exec block, and no longer does.
* Allow runtest-moduleapi use a different 'make', for systems where GNU Make is 'gmake'.
* Fix issue with builds on Solaris re-building everything from scratch due to CFLAGS/LDFLAGS not stored.
* Fix compile failure on Solaris due to atomicvar and a bunch of warnings.
* Fix garbled log timestamps on Solaris.
When a replica uses the diskless-load swapdb approach, it backs up the old database,
then attempts to load a new one, and in case of failure, it restores the backup.
this means that modules with global out of keyspace data, must have an option to
subscribe to events and backup/restore/discard their global data too.
Add a new set of defrag functions that take a defrag context and allow
defragmenting memory blocks and RedisModuleStrings.
Modules can register a defrag callback which will be invoked when the
defrag process handles globals.
Modules with custom data types can also register a datatype-specific
defrag callback which is invoked for keys that require defragmentation.
The callback and associated functions support both one-step and
multi-step options, depending on the complexity of the key as exposed by
the free_effort callback.
This adds a copy callback for module data types, in order to make
modules compatible with the new COPY command.
The callback is optional and COPY will fail for keys with data types
that do not implement it.
Module blocked clients cache the response in a temporary client,
the reply list in this client would be affected by the recent fix
in #7202, but when the reply is later copied into the real client,
it would have bypassed all the checks for output buffer limit, which
would have resulted in both: responding with a partial response to
the client, and also not disconnecting it at all.
One way this was happening is when a module issued an RM_Call which would inject MULTI.
If the module command that does that was itself issued by something else that already did
added MULTI (e.g. another module, or a Lua script), it would have caused nested MULTI.
In fact the MULTI state in the client or the MULTI_EMITTED flag in the context isn't
the right indication that we need to propagate MULTI or not, because on a nested calls
(possibly a module action called by a keyspace event of another module action), these
flags aren't retained / reflected.
instead there's now a global propagate_in_transaction flag for that.
in addition to that, we now have a global in_eval and in_exec flags, to serve the flags
of RM_GetContextFlags, since their dependence on the current client is wrong for the same
reasons mentioned above.
Blocking command should not be used with MULTI, LUA, and RM_Call. This is because,
the caller, who executes the command in this context, expects a reply.
Today, LUA and MULTI have a special (and different) treatment to blocking commands:
LUA - Most commands are marked with no-script flag which are checked when executing
and command from LUA, commands that are not marked (like XREAD) verify that their
blocking mode is not used inside LUA (by checking the CLIENT_LUA client flag).
MULTI - Command that is going to block, first verify that the client is not inside
multi (by checking the CLIENT_MULTI client flag). If the client is inside multi, they
return a result which is a match to the empty key with no timeout (for example blpop
inside MULTI will act as lpop)
For modules that perform RM_Call with blocking command, the returned results type is
REDISMODULE_REPLY_UNKNOWN and the caller can not really know what happened.
Disadvantages of the current state are:
No unified approach, LUA, MULTI, and RM_Call, each has a different treatment
Module can not safely execute blocking command (and get reply or error).
Though It is true that modules are not like LUA or MULTI and should be smarter not
to execute blocking commands on RM_Call, sometimes you want to execute a command base
on client input (for example if you create a module that provides a new scripting
language like javascript or python).
While modules (on modules command) can check for REDISMODULE_CTX_FLAGS_LUA or
REDISMODULE_CTX_FLAGS_MULTI to know not to block the client, there is no way to
check if the command came from another module using RM_Call. So there is no way
for a module to know not to block another module RM_Call execution.
This commit adds a way to unify the treatment for blocking clients by introducing
a new CLIENT_DENY_BLOCKING client flag. On LUA, MULTI, and RM_Call the new flag
turned on to signify that the client should not be blocked. A blocking command
verifies that the flag is turned off before blocking. If a blocking command sees
that the CLIENT_DENY_BLOCKING flag is on, it's not blocking and return results
which are matches to empty key with no timeout (as MULTI does today).
The new flag is checked on the following commands:
List blocking commands: BLPOP, BRPOP, BRPOPLPUSH, BLMOVE,
Zset blocking commands: BZPOPMIN, BZPOPMAX
Stream blocking commands: XREAD, XREADGROUP
SUBSCRIBE, PSUBSCRIBE, MONITOR
In addition, the new flag is turned on inside the AOF client, we do not want to
block the AOF client to prevent deadlocks and commands ordering issues (and there
is also an existing assert in the code that verifies it).
To keep backward compatibility on LUA, all the no-script flags on existing commands
were kept untouched. In addition, a LUA special treatment on XREAD and XREADGROUP was kept.
To keep backward compatibility on MULTI (which today allows SUBSCRIBE, and PSUBSCRIBE).
We added a special treatment on those commands to allow executing them on MULTI.
The only backward compatibility issue that this PR introduces is that now MONITOR
is not allowed inside MULTI.
Tests were added to verify blocking commands are not blocking the client on LUA, MULTI,
or RM_Call. Tests were added to verify the module can check for CLIENT_DENY_BLOCKING flag.
Co-authored-by: Oran Agra <oran@redislabs.com>
Co-authored-by: Itamar Haber <itamar@redislabs.com>
Add two optional callbacks to the RedisModuleTypeMethods structure, which is `free_effort`
and `unlink`. the `free_effort` callback indicates the effort required to free a module memory.
Currently, if the effort exceeds LAZYFREE_THRESHOLD, the module memory may be released
asynchronously. the `unlink` callback indicates the key has been removed from the DB by redis, and
may soon be freed by a background thread.
Add `lazyfreed_objects` info field, which represents the number of objects that have been
lazyfreed since redis was started.
Add `RM_GetTypeMethodVersion` API, which return the current redis-server runtime value of
`REDISMODULE_TYPE_METHOD_VERSION`. You can use that when calling `RM_CreateDataType` to know
which fields of RedisModuleTypeMethods are gonna be supported and which will be ignored.
This cleans up and simplifies the API by passing the command name as the
first argument. Previously the command name was specified explicitly,
but was still included in the argv.
* Introduce a new API's: RM_GetContextFlagsAll, and
RM_GetKeyspaceNotificationFlagsAll that will return the
full flags mask of each feature. The module writer can
check base on this value if the Flags he needs are
supported or not.
* For each flag, introduce a new value on redismodule.h,
this value represents the LAST value and should be there
as a reminder to update it when a new value is added,
also it will be used in the code to calculate the full
flags mask (assuming flags are incrementally increasing).
In addition, stated that the module writer should not use
the LAST flag directly and he should use the GetFlagAll API's.
* Introduce a new API: RM_IsSubEventSupported, that returns for a given
event and subevent, whether or not the subevent supported.
* Introduce a new macro RMAPI_FUNC_SUPPORTED(func) that returns whether
or not a function API is supported by comparing it to NULL.
* Introduce a new API: int RM_GetServerVersion();, that will return the
current Redis version in the format 0x00MMmmpp; e.g. 0x00060008;
* Changed unstable version from 999.999.999 to 255.255.255
Co-authored-by: Oran Agra <oran@redislabs.com>
Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
The main motivation here is to provide a way for modules to create a
single, global context that can be used for logging.
Currently, it is possible to obtain a thread-safe context that is not
attached to any blocked client by using `RM_GetThreadSafeContext`.
However, the attached context is not linked to the module identity so
log messages produced are not tagged with the module name.
Ideally we'd fix this in `RM_GetThreadSafeContext` itself but as it
doesn't accept the current context as an argument there's no way to do
that in a backwards compatible manner.
This is essentially the same as calling COMMAND GETKEYS but provides a
more efficient interface that can be used in every context (i.e. not a
Redis command).
Added RedisModule_HoldString that either returns a
shallow copy of the given String (by increasing
the String ref count) or a new deep copy of String
in case its not possible to get a shallow copy.
Co-authored-by: Itamar Haber <itamar@redislabs.com>
The scan key module API provides the scan callback with the current
field name and value (if it exists). Those arguments are RedisModuleString*
which means it supposes to point to robj which is encoded as a string.
Using createStringObjectFromLongLong function might return robj that
points to an integer and so break a module that tries for example to
use RedisModule_StringPtrLen on the given field/value.
The PR introduces a fix that uses the createObject function and sdsfromlonglong function.
Using those function promise that the field and value pass to the to the
scan callback will be Strings.
The PR also changes the Scan test module to use RedisModule_StringPtrLen
to catch the issue. without this, the issue is hidden because
RedisModule_ReplyWithString knows to handle integer encoding of the
given robj (RedisModuleString).
The PR also introduces a new test to verify the issue is solved.
By using a "circular BRPOPLPUSH"-like scenario it was
possible the get the same client on db->blocking_keys
twice (See comment in moduleTryServeClientBlockedOnKey)
The fix was actually already implememnted in
moduleTryServeClientBlockedOnKey but it had a bug:
the funxction should return 0 or 1 (not OK or ERR)
Other changes:
1. Added two commands to blockonkeys.c test module (To
reproduce the case described above)
2. Simplify blockonkeys.c in order to make testing easier
3. cast raxSize() to avoid warning with format spec
37a10cef introduced automatic wrapping of MULTI/EXEC for the
alsoPropagate API. However this collides with the built-in mechanism
already present in module.c. To avoid complex changes near Redis 6 GA
this commit introduces the ability to exclude call() MUTLI/EXEC wrapping
for also propagate in order to continue to use the old code paths in
module.c.
This bug affected RM_StringToLongDouble and HINCRBYFLOAT.
I added tests for both cases.
Main changes:
1. Fixed string2ld to fail if string contains \0 in the middle
2. Use string2ld in getLongDoubleFromObject - No point of
having duplicated code here
The two changes above broke RM_SaveLongDouble/RM_LoadLongDouble
because the long double string was saved with length+1 (An innocent
mistake, but it's actually a bug - The length passed to
RM_SaveLongDouble should not include the last \0).
If a blocked module client times-out (or disconnects, unblocked
by CLIENT command, etc.) we need to call moduleUnblockClient
in order to free memory allocated by the module sub-system
and blocked-client private data
Other changes:
Made blockedonkeys.tcl tests a bit more aggressive in order
to smoke-out potential memory leaks
With the previous API, a NULL return value was ambiguous and could
represent either an old value of NULL or an error condition. The new API
returns a status code and allows the old value to be returned
by-reference.
This commit also includes test coverage based on
tests/modules/datatype.c which did not exist at the time of the original
commit.
- Adding RM_ScanKey
- Adding tests for RM_ScanKey
- Refactoring RM_Scan API
Changes in RM_Scan
- cleanup in docs and coding convention
- Moving out of experimantal Api
- Adding ctx to scan callback
- Dont use cursor of -1 as an indication of done (can be a valid cursor)
- Set errno when returning 0 for various reasons
- Rename Cursor to ScanCursor
- Test filters key that are not strings, and opens a key if NULL
The implementation expose the following new functions:
1. RedisModule_CursorCreate - allow to create a new cursor object for
keys scanning
2. RedisModule_CursorRestart - restart an existing cursor to restart the
scan
3. RedisModule_CursorDestroy - destroy an existing cursor
4. RedisModule_Scan - scan keys
The RedisModule_Scan function gets a cursor object, a callback and void*
(used as user private data).
The callback will be called for each key in the database proving the key
name and the value as RedisModuleKey.
- the API name was odd, separated to two apis one for LRU and one for LFU
- the LRU idle time was in 1 second resolution, which might be ok for RDB
and RESTORE, but i think modules may need higher resolution
- adding tests for LFU and for handling maxmemory policy mismatch
recently added more reads into that function, if a later read fails, i must
either free what's already allocated, or return the pointer so that the free
callback will release it.
Add two new functions that leverage the RedisModuleDataType mechanism
for RDB serialization/deserialization and make it possible to use it
to/from arbitrary strings:
* RM_SaveDataTypeToString()
* RM_LoadDataTypeFromString()