Is it sufficient... ? -- Yes it is. In standalone mode, we say READY=1
at the comment point; however in replicated mode, we delay sending
READY=1 until the replication sync completes.
This adds Makefile/build-system support for USE_SYSTEMD=(yes|no|*). This
variable's value determines whether or not libsystemd will be linked at
build-time.
If USE_SYSTEMD is set to "yes", make will use PKG_CONFIG to check for
libsystemd's presence, and fail the build early if it isn't
installed/detected properly.
If USE_SYSTEM is set to "no", libsystemd will *not* be linked, even if
support for it is available on the system redis is being built on.
For any other value that USE_SYSTEM might assume (e.g. "auto"),
PKG_CONFIG will try to determine libsystemd's presence, and set up the
build process to link against it, if it was indicated as being
installed/available.
This approach has a number of repercussions of its own, most importantly
the following: If you build redis on a system that actually has systemd
support, but no libsystemd-dev package(s) installed, you'll end up
*without* support for systemd notification/status reporting support in
redis-server. This changes established runtime behaviour.
I'm not sure if the build system and/or the server binary should
indicate this. I'm also wondering if not actually having
systemd-notify-support, but requesting it via the server's config,
should result in a fatal error now.
Instead of replicating a subset of libsystemd's sd_notify(3) internally,
use the dynamic library provided by systemd to communicate with the
service manager.
When systemd supervision was auto-detected or configured, communicate
the actual server status (i.e. "Loading dataset", "Waiting for
master<->replica sync") to systemd, instead of declaring readiness right
after initializing the server process.
there were two lssues, one is taht BGREWRITEAOF failed since the initial one was still in progress
the solution for this one is to enable appendonly from the server startup so there's no initial aofrw.
the other problem was 0 loading progress events, theory is that on some
platforms a sleep of 1 will cause a much greater delay due to the context
switch, but on other platform it doesn't. in theory a sleep of 100 micro
for 1k keys whould take 100ms, and with hz of 500 we should be gettering
50 events (one every 2ms). in practise it doesn't work like that, so trying
to find a sleep that would be long enough but still not cause the test to take
too long.