In general we do not want before/after sleep() callbacks to be called
when we re-enter the event loop, since those calls are only designed in
order to perform operations every main iteration of the event loop, and
re-entering is often just a way to incrementally serve clietns with
error messages or other auxiliary operations. However, if we call the
callbacks, we are then forced to think at before/after sleep callbacks
as re-entrant, which is much harder without any good need.
However here there was also a clear bug: beforeSleep() was actually
never called when re-entering the event loop. But the new afterSleep()
callback was. This is broken and in this instance re-entering
afterSleep() caused a modules GIL dead lock.
Instead of giving the module background operations just a small time to
run in the beforeSleep() function, we can have the lock released for all
the time we are blocked in the multiplexing syscall.
This fix was suggested by Anthony LaTorre, that provided also a good
test case that was used to verify the fix.
The problem with the old implementation is that, the time returned by
a timer event (that is the time after it want to run again) is added
to the event *start time*. So if the event takes, in order to run, more
than the time it says it want to be scheduled again for running, an
infinite loop is triggered.
When system time changes back, the timer will not worker properly
hence some core functionality of redis will stop working(e.g. replication,
bgsave, etc). See issue #633 for details.
The patch saves the previous time and when a system clock skew is detected,
it will force expire all timers.
Modiifed by @antirez: the previous time was moved into the eventLoop
structure to make sure the library is still thread safe as long as you
use different event loops into different threads (otherwise you need
some synchronization). More comments added about the reasoning at the
base of the patch, that's worth reporting here:
/* If the system clock is moved to the future, and then set back to the
* right value, time events may be delayed in a random way. Often this
* means that scheduled operations will not be performed soon enough.
*
* Here we try to detect system clock skews, and force all the time
* events to be processed ASAP when this happens: the idea is that
* processing events earlier is less dangerous than delaying them
* indefinitely, and practice suggests it is. */
networking related stuff moved into networking.c
moved more code
more work on layout of source code
SDS instantaneuos memory saving. By Pieter and Salvatore at VMware ;)
cleanly compiling again after the first split, now splitting it in more C files
moving more things around... work in progress
split replication code
splitting more
Sets split
Hash split
replication split
even more splitting
more splitting
minor change