This actually includes two changes:
1) No newlines to take the master-slave link up when the upstream master
is down. Doing this is dangerous because the sub-slave often is received
replication protocol for an half-command, so can't receive newlines
without desyncing the replication link, even with the code in order to
cancel out the bytes that PSYNC2 was using. Moreover this is probably
also not needed/sane, because anyway the slave can keep serving
requests, and because if it's configured to don't serve stale data, it's
a good idea, actually, to break the link.
2) When a +CONTINUE with a different ID is received, we now break
connection with the sub-slaves: they need to be notified as well. This
was part of the original specification but for some reason it was not
implemented in the code, and was alter found as a PSYNC2 bug in the
integration testing.
This is the PSYNC2 test that helped find issues in the code, and that
still can show a protocol desync from time to time. Work is in progress
in order to find the issue. For now the test is not enabled in "make
test" and must be run manually.
1. Master replication offset was cleared after switching configuration
to some other slave, since it was assumed you can't PSYNC after a
switch. Note the case anymore and when we successfully PSYNC we need to
have our offset untouched.
2. Secondary replication ID was not reset to "000..." pattern at
startup.
3. Master in error state replying -LOADING or other transient errors
forced the slave to discard the cached master and full resync. This is
now fixed.
4. Better logging of what's happening on failed PSYNCs.
This means that stopping a slave and restarting it will still make it
able to PSYNC with the master. Moreover the master itself will retain
its ID/offset, in case it gets turned into a slave, or if a slave will
try to PSYNC with it with an exactly updated offset (otherwise there is
no backlog).
This change was possible thanks to PSYNC v2 that makes saving the current
replication state much simpler.
The gist of the changes is that now, partial resynchronizations between
slaves and masters (without the need of a full resync with RDB transfer
and so forth), work in a number of cases when it was impossible
in the past. For instance:
1. When a slave is promoted to mastrer, the slaves of the old master can
partially resynchronize with the new master.
2. Chained slalves (slaves of slaves) can be moved to replicate to other
slaves or the master itsef, without requiring a full resync.
3. The master itself, after being turned into a slave, is able to
partially resynchronize with the new master, when it joins replication
again.
In order to obtain this, the following main changes were operated:
* Slaves also take a replication backlog, not just masters.
* Same stream replication for all the slaves and sub slaves. The
replication stream is identical from the top level master to its slaves
and is also the same from the slaves to their sub-slaves and so forth.
This means that if a slave is later promoted to master, it has the
same replication backlong, and can partially resynchronize with its
slaves (that were previously slaves of the old master).
* A given replication history is no longer identified by the `runid` of
a Redis node. There is instead a `replication ID` which changes every
time the instance has a new history no longer coherent with the past
one. So, for example, slaves publish the same replication history of
their master, however when they are turned into masters, they publish
a new replication ID, but still remember the old ID, so that they are
able to partially resynchronize with slaves of the old master (up to a
given offset).
* The replication protocol was slightly modified so that a new extended
+CONTINUE reply from the master is able to inform the slave of a
replication ID change.
* REPLCONF CAPA is used in order to notify masters that a slave is able
to understand the new +CONTINUE reply.
* The RDB file was extended with an auxiliary field that is able to
select a given DB after loading in the slave, so that the slave can
continue receiving the replication stream from the point it was
disconnected without requiring the master to insert "SELECT" statements.
This is useful in order to guarantee the "same stream" property, because
the slave must be able to accumulate an identical backlog.
* Slave pings to sub-slaves are now sent in a special form, when the
top-level master is disconnected, in order to don't interfer with the
replication stream. We just use out of band "\n" bytes as in other parts
of the Redis protocol.
An old design document is available here:
https://gist.github.com/antirez/ae068f95c0d084891305
However the implementation is not identical to the description because
during the work to implement it, different changes were needed in order
to make things working well.
Redis fails to compile on MacOS 10.8.5 with Clang 4, version 421.0.57
(based on LLVM 3.1svn).
When compiling zmalloc.c, we get these warnings:
CC zmalloc.o
zmalloc.c:109:5: warning: implicit declaration of function '__atomic_add_fetch' is invalid in C99 [-Wimplicit-function-declaration]
update_zmalloc_stat_alloc(zmalloc_size(ptr));
^
zmalloc.c:75:9: note: expanded from macro 'update_zmalloc_stat_alloc'
atomicIncr(used_memory,__n,used_memory_mutex); \
^
./atomicvar.h:57:37: note: expanded from macro 'atomicIncr'
#define atomicIncr(var,count,mutex) __atomic_add_fetch(&var,(count),__ATOMIC_RELAXED)
^
zmalloc.c:145:5: warning: implicit declaration of function '__atomic_sub_fetch' is invalid in C99 [-Wimplicit-function-declaration]
update_zmalloc_stat_free(oldsize);
^
zmalloc.c:85:9: note: expanded from macro 'update_zmalloc_stat_free'
atomicDecr(used_memory,__n,used_memory_mutex); \
^
./atomicvar.h:58:37: note: expanded from macro 'atomicDecr'
#define atomicDecr(var,count,mutex) __atomic_sub_fetch(&var,(count),__ATOMIC_RELAXED)
^
zmalloc.c:205:9: warning: implicit declaration of function '__atomic_load_n' is invalid in C99 [-Wimplicit-function-declaration]
atomicGet(used_memory,um,used_memory_mutex);
^
./atomicvar.h:60:14: note: expanded from macro 'atomicGet'
dstvar = __atomic_load_n(&var,__ATOMIC_RELAXED); \
^
3 warnings generated.
Also on lazyfree.c:
CC lazyfree.o
lazyfree.c:68:13: warning: implicit declaration of function '__atomic_add_fetch' is invalid in C99 [-Wimplicit-function-declaration]
atomicIncr(lazyfree_objects,1,lazyfree_objects_mutex);
^
./atomicvar.h:57:37: note: expanded from macro 'atomicIncr'
#define atomicIncr(var,count,mutex) __atomic_add_fetch(&var,(count),__ATOMIC_RELAXED)
^
lazyfree.c:111:5: warning: implicit declaration of function '__atomic_sub_fetch' is invalid in C99 [-Wimplicit-function-declaration]
atomicDecr(lazyfree_objects,1,lazyfree_objects_mutex);
^
./atomicvar.h:58:37: note: expanded from macro 'atomicDecr'
#define atomicDecr(var,count,mutex) __atomic_sub_fetch(&var,(count),__ATOMIC_RELAXED)
^
2 warnings generated.
Then in the linking stage:
LINK redis-server
Undefined symbols for architecture x86_64:
"___atomic_add_fetch", referenced from:
_zmalloc in zmalloc.o
_zcalloc in zmalloc.o
_zrealloc in zmalloc.o
_dbAsyncDelete in lazyfree.o
_emptyDbAsync in lazyfree.o
_slotToKeyFlushAsync in lazyfree.o
"___atomic_load_n", referenced from:
_zmalloc_used_memory in zmalloc.o
_zmalloc_get_fragmentation_ratio in zmalloc.o
"___atomic_sub_fetch", referenced from:
_zrealloc in zmalloc.o
_zfree in zmalloc.o
_lazyfreeFreeObjectFromBioThread in lazyfree.o
_lazyfreeFreeDatabaseFromBioThread in lazyfree.o
_lazyfreeFreeSlotsMapFromBioThread in lazyfree.o
ld: symbol(s) not found for architecture x86_64
clang: error: linker command failed with exit code 1 (use -v to see invocation)
make[1]: *** [redis-server] Error 1
make: *** [all] Error 2
With this patch, the compilation is sucessful, no warnings.
Running `make test` we get a almost clean bill of health. Test pass with
one exception:
[err]: Check for memory leaks (pid 52793) in tests/unit/dump.tcl
[err]: Check for memory leaks (pid 53103) in tests/unit/auth.tcl
[err]: Check for memory leaks (pid 53117) in tests/unit/auth.tcl
[err]: Check for memory leaks (pid 53131) in tests/unit/protocol.tcl
[err]: Check for memory leaks (pid 53145) in tests/unit/protocol.tcl
[ok]: Check for memory leaks (pid 53160)
[err]: Check for memory leaks (pid 53175) in tests/unit/scan.tcl
[ok]: Check for memory leaks (pid 53189)
[err]: Check for memory leaks (pid 53221) in tests/unit/type/incr.tcl
.
.
.
Full debug log (289MB, uncompressed) available at
https://dl.dropboxusercontent.com/u/75548/logs/redis-debug-log-macos-10.8.5.log.xz
Most if not all of the memory leak tests fail. Not sure if this is
related. They are the only ones that fail. I belive they are not related,
but just the memory leak detector is not working properly on 10.8.5.
Signed-off-by: Pedro Melo <melo@simplicidade.org>