Arguments arity and arguments type error of redis.call() were not
reported correctly to Lua, so the command acted in this regard like
redis.pcall(), but just for two commands. Redis.call() should always
raise errors instead.
During the refactoring needed for lazy free, specifically the conversion
of t_hash from struct robj to plain SDS strings, HINCRBFLOAT was
accidentally moved away from long doubles to doubles for internal
processing of increments and formatting.
The diminished precision created more obvious artifacts in the way small
numbers are formatted once we convert from decimal number in radix 10 to
double and back to its string in radix 10.
By using more precision, we now have less surprising results at least
with small numbers like "1.23", exactly like in the previous versions of
Redis.
See issue #2846.
An user raised a question about a given behavior of PFCOUNT. Added a
test to show the behavior (union) is correct when most of the items are
in common.
Currently this feature is only accessible via DEBUG for testing, since
otherwise depending on the instance configuration a given script works
or is broken, which is against the Redis philosophy.
By calling redis.replicate_commands(), the scripting engine of Redis
switches to commands replication instead of replicating whole scripts.
This is useful when the script execution is costly but only results in a
few writes performed to the dataset.
Morover, in this mode, it is possible to call functions with side
effects freely, since the script execution does not need to be
deterministic: anyway we'll capture the outcome from the point of view
of changes to the dataset.
In this mode math.random() returns different sequences at every call.
If redis.replicate_commnads() is not called before any other write, the
command returns false and sticks to whole scripts replication instead.
Sometimes it can be useful for clients to completely disable replies
from the Redis server. For example when the client sends fire and forget
commands or performs a mass loading of data, or in caching contexts
where new data is streamed constantly. In such contexts to use server
time and bandwidth in order to send back replies to clients, which are
going to be ignored, is a shame.
Multiple mechanisms are possible to implement such a feature. For
example it could be a feature of MULTI/EXEC, or a command prefix
such as "NOREPLY SADD myset foo", or a different mechanism that allows
to switch on/off requests using the CLIENT command.
The MULTI/EXEC approach has the problem that transactions are not
strictly part of the no-reply semantics, and if we want to insert a lot
of data in a bulk way, creating a huge MULTI/EXEC transaction in the
server memory is bad.
The prefix is the best in this specific use case since it does not allow
desynchronizations, and is pretty clear semantically. However Redis
internals and client libraries are not prepared to handle this
currently.
So the implementation uses the CLIENT command, providing a new REPLY
subcommand with three options:
CLIENT REPLY OFF disables the replies, and does not reply itself.
CLIENT REPLY ON re-enables the replies, replying +OK.
CLIENT REPLY SKIP only discards the reply of the next command, and
like OFF does not reply anything itself.
The reason to add the SKIP command is that it allows to have an easy
way to send conceptually "single" commands that don't need a reply
as the sum of two pipelined commands:
CLIENT REPLY SKIP
SET key value
Note that CLIENT REPLY ON replies with +OK so it should be used when
sending multiple commands that don't need a reply. However since it
replies with +OK the client can check that the connection is still
active and all the previous commands were received.
This is currently just into Redis "unstable" so the proposal can be
modified or abandoned based on users inputs.
This new function is able to restart the server "in place". The current
Redis process executes the same executable it was executed with, using
the same arguments and configuration file.
the check for lat/long valid ranges were performed inside the for loop,
two times instead of one, and the first time when the second element of
the array, xy[1], was yet not populated. This resulted into issue #2799.
Close issue #2799.