Technically as soon as Redis 64 bit gets proper support for loading
collections and/or DBs with more than 2^32 elements, the 32 bit version
should be modified in order to check if what we read from rdbLoadLen()
overflows. This would only apply to huge RDB files created with a 64 bit
instance and later loaded into a 32 bit instance.
This is an attempt at mitigating problems due to cross protocol
scripting, an attack targeting services using line oriented protocols
like Redis that can accept HTTP requests as valid protocol, by
discarding the invalid parts and accepting the payloads sent, for
example, via a POST request.
For this to be effective, when we detect POST and Host: and terminate
the connection asynchronously, the networking code was modified in order
to never process further input. It was later verified that in a
pipelined request containing a POST command, the successive commands are
not executed.
RedisModule_StringRetain() allows, when automatic memory management is
on, to keep string objects living after the callback returns. Can also
be used in order to use Redis reference counting of objects inside
modules.
The reason why this is useful is that sometimes when implementing new
data types we want to reference RedisModuleString objects inside the
module private data structures, so those string objects must be valid
after the callback returns even if not referenced inside the Redis key
space.
This feature is useful, especially in deployments using Sentinel in
order to setup Redis HA, where the slave is executed with NAT or port
forwarding, so that the auto-detected port/ip addresses, as listed in
the "INFO replication" output of the master, or as provided by the
"ROLE" command, don't match the real addresses at which the slave is
reachable for connections.
By grepping the continuous integration errors log a number of GEORADIUS
tests failures were detected.
Fortunately when a GEORADIUS failure happens, the test suite logs enough
information in order to reproduce the problem: the PRNG seed,
coordinates and radius of the query.
By reproducing the issues, three different bugs were discovered and
fixed in this commit. This commit also improves the already good
reporting of the fuzzer and adds the failure vectors as regression
tests.
The issues found:
1. We need larger squares around the poles in order to cover the area
requested by the user. There were already checks in order to use a
smaller step (larger squares) but the limit set (+/- 67 degrees) is not
enough in certain edge cases, so 66 is used now.
2. Even near the equator, when the search area center is very near the
edge of the square, the north, south, west or ovest square may not be
able to fully cover the specified radius. Now a test is performed at the
edge of the initial guessed search area, and larger squares are used in
case the test fails.
3. Because of rounding errors between Redis and Tcl, sometimes the test
signaled false positives. This is now addressed.
Whenever possible the original code was improved a bit in other ways. A
debugging example stanza was added in order to make the next debugging
session simpler when the next bug is found.
In a previous commit the replication code was changed in order to
centralize the BGSAVE for replication trigger in replicationCron(),
however after further testings, the 1 second delay imposed by this
change is not acceptable.
So now the BGSAVE is only delayed if the AOF rewriting process is
active. However past comments made sure that replicationCron() is always
able to trigger the BGSAVE when needed, making the code generally more
robust.
The new code is more similar to the initial @oranagra patch where the
BGSAVE was delayed only if an AOF rewrite was in progress.
Trivia: delaying the BGSAVE uncovered a minor Sentinel issue that is now
fixed.
During the initial handshake with the master a slave will report to have
a very high disconnection time from its master (since technically it was
disconnected since forever, so the current UNIX time in seconds is
reported).
However when the slave is connected again the Sentinel may re-scan the
INFO output again only after 10 seconds, which is a long time. During
this time Sentinels will consider this instance unable to failover, so
a useless delay is introduced.
Actaully this hardly happened in the practice because when a slave's
master is down, the INFO period for slaves changes to 1 second. However
when a manual failover is attempted immediately after adding slaves
(like in the case of the Sentinel unit test), this problem may happen.
This commit changes the INFO period to 1 second even in the case the
slave's master is not down, but the slave reported to be disconnected
from the master (by publishing, last time we checked, a master
disconnection time field in INFO).
This change is required as a result of an unrelated change in the
replication code that adds a small delay in the master-slave first
synchronization.
This patch, written in collaboration with Oran Agra (@oranagra) is a companion
to 780a8b1. Together the two patches should avoid that the AOF and RDB saving
processes can be spawned at the same time. Previously conditions that
could lead to two saving processes at the same time were:
1. When AOF is enabled via CONFIG SET and an RDB saving process is
already active.
2. When the SYNC command decides to start an RDB saving process ASAP in
order to serve a new slave that cannot partially resynchronize (but
only if we have a disk target for replication, for diskless
replication there is not such a problem).
Condition "1" is not very severe but "2" can happen often and is
definitely good at degrading Redis performances in an unexpected way.
The two commits have the effect of always spawning RDB savings for
replication in replicationCron() instead of attempting to start an RDB
save synchronously. Moreover when a BGSAVE or AOF rewrite must be
performed, they are instead just postponed using flags that will try to
perform such operations ASAP.
Finally the BGSAVE command was modified in order to accept a SCHEDULE
option so that if an AOF rewrite is in progress, when this option is
given, the command no longer returns an error, but instead schedules an
RDB rewrite operation for when it will be possible to start it.
This makes the replication code conceptually simpler by removing the
synchronous BGSAVE trigger in syncCommand(). This also means that
socket and disk BGSAVE targets are handled by the same code.
It is possible to get better results by using the pool like in the LRU
case. Also from tests during the morning I believe the current
implementation has issues in the frequency decay function that should
decrease the counter at periodic intervals.
The LRU eviction code used to make local choices: for each DB visited it
selected the best key to evict. This was repeated for each DB. However
this means that there could be DBs with very frequently accessed keys
that are targeted by the LRU algorithm while there were other DBs with
many better candidates to expire.
This commit attempts to fix this problem for the LRU policy. However the
TTL policy is still not fixed by this commit. The TTL policy will be
fixed in a successive commit.
This is an initial (partial because of TTL policy) fix for issue #2647.
To destroy and recreate the pool[].key element is slow, so we allocate
in pool[].cached SDS strings that can account up to 255 chars keys and
try to reuse them. This provides a solid 20% performance improvement
in real world workload alike benchmarks.
We start from the end of the pool to the initial item, zero-ing
every entry we use or every ghost entry, there is nothing to memmove
since to the right everything should be already set to NULL.
The rio structure is referenced in the global 'riostate' structure
in order for the logging functions to be always able to access the state
of the "pseudo-loading" of the RDB, needed for the check.
Courtesy of Valgrind.
They were under /deps since they originate from a different source tree,
however at this point they are very modified and we took ownership of
both the files making changes, fixing bugs, so there is no upgrade path
from the original code tree.
Given that, better to move the code under /src with proper dependencies
and with a more simpler editing experience.
strict_strtoll() has a bug that reports the empty string as ok and
parses it as zero.
Apparently nobody ever replaced this old call with the faster/saner
string2ll() which is used otherwise in the rest of the Redis core.
This commit close#3333.
In issues #3361 / #3365 a problem was reported / fixed with redis-cli
not updating correctly the current DB on error after SELECT.
In theory this bug was fixed in 0042fb0e, but actually the commit only
fixed the prompt updating, not the fact the state was set in a wrong
way.
This commit removes the check in the prompt update, now that hopefully
it is the state that is correct, there is no longer need for this check.
This commit both fixes the crash reported with issue #3364 and
also properly closes the old links after the Sentinel address for the
other masters gets updated.
The two problems where:
1. The Sentinel that switched address may not monitor all the masters,
it is possible that there is no match, and the 'match' variable is
NULL. Now we check for no match and 'continue' to the next master.
2. By ispecting the code because of issue "1" I noticed that there was a
problem in the code that disconnects the link of the Sentinel that
needs the address update. Basically link->disconnected is non-zero
even if just *a single link* (cc -- command link or pc -- pubsub
link) are disconnected, so to check with if (link->disconnected)
in order to close the links risks to leave one link connected.
I was able to manually reproduce the crash at "1" and verify that the
commit resolves the issue.
Close#3364.
So far we used an external program (later executed within Redis) and
parser in order to check RDB files for correctness. This forces, at each
RDB format update, to have two copies of the same format implementation
that are hard to keep in sync. Morover the former RDB checker only
checked the very high-level format of the file, without actually trying
to load things in memory. Certain corruptions can only be handled by
really loading key-value pairs.
This first commit attempts to unify the Redis RDB loadig code with the
task of checking the RDB file for correctness. More work is needed but
it looks like a sounding direction so far.
The quicklist takes a cached version of the ziplist representation size
in bytes. The implementation must update this length every time the
underlying ziplist changes. However quicklistReplaceAtIndex() failed to
fix the length.
During LSET calls, the size of the ziplist blob and the cached size
inside the quicklist diverged. Later, when this size is used in an
authoritative way, for example during nodes splitting in order to copy
the nodes, we end with a duplicated node that may contain random
garbage.
This commit should fix issue #3343, however several problems were found
reviewing the quicklist.c code in search of this bug that should be
addressed soon or later.
For example:
1. To take a cached ziplist length is fragile since failing to update it
leads to this kind of issues.
2. The node splitting code needs auditing. For example it works just for
a side effect of ziplistDeleteRange() to be able to cope with a wrong
count of elements to remove. The code inside quicklist.c assumes that
-1 means "delete till the end" while actually it's just a count of how
many elements to delete, and is an unsigned count. So -1 gets converted
into the maximum integer, and just by chance the ziplist code stops
deleting elements after there are no more to delete.
3. Node splitting is extremely inefficient, it copies the node and
removes elements from both nodes even when actually there is to move a
single entry from one node to the other, or when the new resulting node
is empty at all so there is nothing to copy but just to create a new
node.
However at least for Redis 3.2 to introduce fresh code inside
quicklist.c may be even more risky, so instead I'm writing a better
fuzzy tester to stress the internals a bit more in order to anticipate
other possible bugs.
This bug was found using a fuzzy tester written after having some clue
about where the bug could be. The tester eventually created a ~2000
commands sequence able to always crash Redis. I wrote a better version
of the tester that searched for the smallest sequence that could crash
Redis automatically. Later this smaller sequence was minimized by
removing random commands till it still crashed the server. This resulted
into a sequence of 7 commands. With this small sequence it was just a
matter of filling the code with enough printf() to understand enough
state to fix the bug.
Display the nodes summary once the cluster is established using
redis-trib.rb
After the cluster meet and join was done, when the summary was shown, it
was giving info regarding the nodes. This fix ensures that confusion
where the slaves were shown as masters.
Fix would be to reset the nodes and reload the cluster information
before checking the cluster status after creating it.
This commit changes what provided by PR #3315 (merged) in order to
let the user specify the log level as a string.
The define could be also used, but when this happens, they must be
decoupled from the defines in the Redis core, like in the other part of
the Redis modules implementations, so that a switch statement (or a
function) remaps between the two, otherwise we are no longer free to
change the internal Redis defines.
Most of the time to check the last element is the way to go, however
there are patterns where the contrary is the best choice. Zig-zag
scanning implemented in this commmit always checks the obvious element
first (the last added -- think at a loop where the last element
allocated gets freed again and again), and continues checking one
element in the head and one in the tail.
Thanks to @dvisrky that fixed the original implementation of the
function and proposed zig zag scanning.
This bug most experienced effect was an inability of Redis to
reconfigure back old masters to slaves after they are reachable again
after a failover. This was due to failing to reset the count of the
pending commands properly, so the master appeared fovever down.
Was introduced in Redis 3.2 new Sentinel connection sharing feature
which is a lot more complex than the 3.0 code, but more scalable.
Many thanks to people reporting the issue, and especially to
@sskorgal for investigating the issue in depth.
Hopefully closes#3285.
I recently introduced populating the autocomplete help array with the
COMMAND command if available. However this was performed before parsing
the arguments, defaulting to instance 6379. After the connection is
performed it remains stable.
The effect is that if there is an instance running on port 6339,
whatever port you specify is ignored and 6379 is connected to instead.
The right port will be selected only after a reconnection.
Close#3314.
Reference issue #3218.
Checking the code I can't find a reason why the original RESTORE
code was so opinionated about restoring only the current version. The
code in to `rdb.c` appears to be capable as always to restore data from
older versions of Redis, and the only places where it is needed the
current version in order to correctly restore data, is while loading the
opcodes, not the values itself as it happens in the case of RESTORE.
For the above reasons, this commit enables RESTORE to accept older
versions of values payloads.
Comment format fixed + local var modified from camel case to underscore
separators as Redis code base normally does (camel case is mostly used
for global symbols like structure names, function names, global vars,
...).
Now that modules receive RedisModuleString objects on loading, they are
allowed to call the String API, so the context must be released
correctly.
Related to #3293.
All lists are now represented via quicklists.
Quicklists are never represented referencing robj structures, so trying
to compress their representation does not make sense. That the new way
is faster was experimentally verified with micro benchmarks in order to
prove that the intuition was correct.
Probably there is no compiler that will actaully break the code or raise
a signal for unsigned -> signed overflowing conversion, still it was
apparently possible to write it in a more correct way.
All tests passing.
Compiling Redis worked as a side effect of jemalloc target specifying
-ldl as needed linker options, otherwise it is not provided during
linking and dlopen() API will remain unresolved symbols.