Valgrind checks that the buffers we transfer via syscalls are all
composed of bytes actually initialized. This is useful, it makes we able
to avoid leaking informations in non initialized parts fo messages
transferred to other hosts. This commit fixes one of such issues.
Can't be initialized by resetManualFailover() since it's actual state
the function uses, so we need to initialize it at startup time. Not
really a bug in practical terms, but showed up into valgrind and is not
technically correct anyway.
Adds configuration option 'supervised [no | upstart | systemd | auto]'
Also removed 'bzero' from the previous implementation because it's 2015.
(We could actually statically initialize those structs, but clang
throws an invalid warning when we try, so it looks bad even though it
isn't bad.)
Fixes#2264
Previously, Redis only wrote the pid file if
it was daemonizing, but many times it's useful to have
the pid written out even if you're in the foreground.
Some background for this is:
I usually run redis via daemontools. That entails running
redis-server on the foreground. Given that, I'd also want
redis-server to create a pidfile so other processes (e.g. nagios)
can run checks for that.
Closes#463
This commit introduces a new RDB data type called 'aux'. It is used in
order to insert inside an RDB file key-value pairs that may serve
different needs, without breaking backward compatibility when new
informations are embedded inside an RDB file. The contract between Redis
versions is to ignore unknown aux fields when encountered.
Aux fields can be used in order to:
1. Augment the RDB file with info like version of Redis that created the
RDB file, creation time, used memory while the RDB was created, and so
forth.
2. Add state about Redis inside the RDB file that we need to reload
later: replication offset, previos master run ID, in order to improve
failovers safety and allow partial resynchronization after a slave
restart.
3. Anything that we may want to add to RDB files without breaking the
ability of past versions of Redis to load the file.
The new opcode is an hint about the size of the dataset (keys and number
of expires) we are going to load for a given Redis database inside the
RDB file. Since hash tables are resized accordingly ASAP, useless
rehashing is avoided, speeding up load times significantly, in the order
of ~ 20% or more for larger data sets.
Related issue: #1719
Adds: ql_compressed (boolean, 1 if compression enabled for list, 0
otherwise)
Adds: ql_uncompressed_size (actual uncompressed size of all quicklistNodes)
Adds: ql_ziplist_max (quicklist max ziplist fill factor)
Compression ratio of the list is then ql_uncompressed_size / serializedlength
We report ql_uncompressed_size for all quicklists because serializedlength
is a _compressed_ representation anyway.
Sample output from a large list:
127.0.0.1:6379> llen abc
(integer) 38370061
127.0.0.1:6379> debug object abc
Value at:0x7ff97b51d140 refcount:1 encoding:quicklist serializedlength:19878335 lru:9718164 lru_seconds_idle:5 ql_nodes:21945 ql_avg_node:1748.46 ql_ziplist_max:-2 ql_compressed:0 ql_uncompressed_size:1643187761
(1.36s)
The 1.36s result time is because rdbSavedObjectLen() is serializing the
object, not because of any new stats reporting.
If we run DEBUG OBJECT on a compressed list, DEBUG OBJECT takes almost *zero*
time because rdbSavedObjectLen() reuses already-compressed ziplists:
127.0.0.1:6379> debug object abc
Value at:0x7fe5c5800040 refcount:1 encoding:quicklist serializedlength:19878335 lru:9718109 lru_seconds_idle:5 ql_nodes:21945 ql_avg_node:1748.46 ql_ziplist_max:-2 ql_compressed:1 ql_uncompressed_size:1643187761
This removes:
- list-max-ziplist-entries
- list-max-ziplist-value
This adds:
- list-max-ziplist-size
- list-compress-depth
Also updates config file with new sections and updates
tests to use quicklist settings instead of old list settings.
Let user set how many nodes to *not* compress.
We can specify a compression "depth" of how many nodes
to leave uncompressed on each end of the quicklist.
Depth 0 = disable compression.
Depth 1 = only leave head/tail uncompressed.
- (read as: "skip 1 node on each end of the list before compressing")
Depth 2 = leave head, head->next, tail->prev, tail uncompressed.
- ("skip 2 nodes on each end of the list before compressing")
Depth 3 = Depth 2 + head->next->next + tail->prev->prev
- ("skip 3 nodes...")
etc.
This also:
- updates RDB storage to use native quicklist compression (if node is
already compressed) instead of uncompressing, generating the RDB string,
then re-compressing the quicklist node.
- internalizes the "fill" parameter for the quicklist so we don't
need to pass it to _every_ function. Now it's just a property of
the list.
- allows a runtime-configurable compression option, so we can
expose a compresion parameter in the configuration file if people
want to trade slight request-per-second performance for up to 90%+
memory savings in some situations.
- updates the quicklist tests to do multiple passes: 200k+ tests now.
Added field 'ql_nodes' and 'ql_avg_per_node'.
ql_nodes is the number of quicklist nodes in the quicklist.
ql_avg_node is the average fill level in each quicklist node. (LLEN / QL_NODES)
Sample output:
127.0.0.1:6379> DEBUG object b
Value at:0x7fa42bf2fed0 refcount:1 encoding:quicklist serializedlength:18489 lru:8983768 lru_seconds_idle:3 ql_nodes:430 ql_avg_per_node:511.73
127.0.0.1:6379> llen b
(integer) 220044
Previously, the old test ran 5,000 loops and used about 500k.
With quicklist, storing those same 5,000 loops takes up 24k, so the
"large value check" failed!
This increases the test to 20,000 loops which makes the object dump 96k.
Turns out it's a huge improvement during save/reload/migrate/restore
because, with compression enabled, we're compressing 4k or 8k
chunks of data consisting of multiple elements in one ziplist
instead of compressing series of smaller individual elements.
Use the existing memory space for an SDS to convert it to a regular
character buffer so we don't need to allocate duplicate space just
to extract a usable buffer for native operations.
Fill factor now has two options:
- negative (1-5) for size-based ziplist filling
- positive for length-based ziplist filling with implicit size cap.
Negative offsets define ziplist size limits of:
-1: 4k
-2: 8k
-3: 16k
-4: 32k
-5: 64k
Positive offsets now automatically limit their max size to 8k. Any
elements larger than 8k will be in individual nodes.
Positive ziplist fill factors will keep adding elements
to a ziplist until one of:
- ziplist has FILL number of elements
- or -
- ziplist grows above our ziplist max size (currently 8k)
When using positive fill factors, if you insert a large
element (over 8k), that element will automatically allocate
an individual quicklist node with one element and no other elements will be
in the same ziplist inside that quicklist node.
When using negative fill factors, elements up to the size
limit can be added to one quicklist node. If an element
is added larger than the max ziplist size, that element
will be allocated an individual ziplist in a new quicklist node.
Tests also updated to start testing at fill factor -5.
This started out as #2158 by sunheehnus, but I kept rewriting it
until I could understand things more easily and get a few more
correctness guarantees out of the readability flow.
The original commit created and returned a new ziplist with the contents of
both input ziplists, but I prefer to grow one of the input ziplists
and destroy the other one.
So, instead of malloc+copy as in #2158, the merge now reallocs one of
the existing ziplists and copies the other ziplist into the new space.
Also added merge test cases to ziplistTest()