After adjustMeaningfulReplOffset(), all the other related variable
should be updated, including server.second_replid_offset.
Or the old version redis like 5.0 may receive wrong data from
replication stream, cause redis 5.0 can sync with redis 6.0,
but doesn't know meaningful offset.
Otherwise we run into that:
Backtrace:
src/redis-server 127.0.0.1:21322(logStackTrace+0x45)[0x479035]
src/redis-server 127.0.0.1:21322(sigsegvHandler+0xb9)[0x4797f9]
/lib/x86_64-linux-gnu/libpthread.so.0(+0x11390)[0x7fd373c5e390]
src/redis-server 127.0.0.1:21322(_serverAssert+0x6a)[0x47660a]
src/redis-server 127.0.0.1:21322(freeReplicationBacklog+0x42)[0x451282]
src/redis-server 127.0.0.1:21322[0x4552d4]
src/redis-server 127.0.0.1:21322[0x4c5593]
src/redis-server 127.0.0.1:21322(aeProcessEvents+0x2e6)[0x42e786]
src/redis-server 127.0.0.1:21322(aeMain+0x1d)[0x42eb0d]
src/redis-server 127.0.0.1:21322(main+0x4c5)[0x42b145]
/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xf0)[0x7fd3738a3830]
src/redis-server 127.0.0.1:21322(_start+0x29)[0x42b409]
Since we disconnect all the replicas and free the replication backlog in
certain replication paths, and the code that will free the replication
backlog expects that no replica is connected.
However we still need to free the replicas asynchronously in certain
cases, as documented in the top comment of disconnectSlaves().
Citing from the issue:
btw I suggest we change this fix to something else:
* We revert the fix.
* We add a call that disconnects chained replicas in the place where we trim the replica (that is a master i this case) offset.
This way we can avoid disconnections when there is no trimming of the backlog.
Note that we now want to disconnect replicas asynchronously in
disconnectSlaves(), because it's in general safer now that we can call
it from freeClient(). Otherwise for instance the command:
CLIENT KILL TYPE master
May crash: clientCommand() starts running the linked of of clients,
looking for clients to kill. However it finds the master, kills it
calling freeClient(), but this in turn calls replicationCacheMaster()
that may also call disconnectSlaves() now. So the linked list iterator
of the clientCommand() will no longer be valid.
There's a rare case which leads to stagnation in the defragger, causing
it to keep scanning the keyspace and do nothing (not moving any
allocation), this happens when all the allocator slabs of a certain bin
have the same % utilization, but the slab from which new allocations are
made have a lower utilization.
this commit fixes it by removing the current slab from the overall
average utilization of the bin, and also eliminate any precision loss in
the utilization calculation and move the decision about the defrag to
reside inside jemalloc.
and also add a test that consistently reproduce this issue.
in ACLSetUserCommandBit, when the command bit overflows, no operation
is performed, so no need clear the USER_FLAG_ALLCOMMANDS flag.
in ACLSetUser, when adding subcommand, we don't need to call
ACLGetCommandID ahead since subcommand may be empty.
This was broken in 1a7cd2c: we identified a crash in the CI, what
was happening before the fix should be like that:
1. The client gets in the async free list.
2. However freeClient() gets called again against the same client
which is a master.
3. The client arrived in freeClient() with the CLOSE_ASAP flag set.
4. The master gets cached, but NOT removed from the CLOSE_ASAP linked
list.
5. The master client that was cached was immediately removed since it
was still in the list.
6. Redis accessed a freed cached master.
This is how the crash looked like:
=== REDIS BUG REPORT START: Cut & paste starting from here ===
1092:S 16 May 2020 11:44:09.731 # Redis 999.999.999 crashed by signal: 11
1092:S 16 May 2020 11:44:09.731 # Crashed running the instruction at: 0x447e18
1092:S 16 May 2020 11:44:09.731 # Accessing address: 0xffffffffffffffff
1092:S 16 May 2020 11:44:09.731 # Failed assertion: (:0)
------ STACK TRACE ------
EIP:
src/redis-server 127.0.0.1:21300(readQueryFromClient+0x48)[0x447e18]
And the 0xffff address access likely comes from accessing an SDS that is
set to NULL (we go -1 offset to read the header).
The context is issue #7205: since the introduction of threaded I/O we close
clients asynchronously by default from readQueryFromClient(). So we
should no longer prevent the caching of the master client, to later
PSYNC incrementally, if such flags are set. However we also don't want
the master client to be cached with such flags (would be closed
immediately after being restored). And yet we want a way to understand
if a master was closed because of a protocol error, and in that case
prevent the caching.
This bug was introduced by a recent change in which readQueryFromClient
is using freeClientAsync, and despite the fact that now
freeClientsInAsyncFreeQueue is in beforeSleep, that's not enough since
it's not called during loading in processEventsWhileBlocked.
furthermore, afterSleep was called in that case but beforeSleep wasn't.
This bug also caused slowness sine the level-triggered mode of epoll
kept signaling these connections as readable causing us to keep doing
connRead again and again for ll of these, which keep accumulating.
now both before and after sleep are called, but not all of their actions
are performed during loading, some are only reserved for the main loop.
fixes issue #7215
This is really required only for older OpenSSL versions.
Also, at the moment Redis does not use OpenSSL from multiple threads so
this will only be useful if modules end up doing that.
We want to send pings and pongs at specific intervals, since our packets
also contain information about the configuration of the cluster and are
used for gossip. However since our cluster bus is used in a mixed way
for data (such as Pub/Sub or modules cluster messages) and metadata,
sometimes a very busy channel may delay the reception of pong packets.
So after discussing it in #7216, this commit introduces a new field that
is not exposed in the cluster, is only an internal information about
the last time we received any data from a given node: we use this field
in order to avoid detecting failures, claiming data reception of new
data from the node is a proof of liveness.