Track bandwidth used by clients and replication (but diskless
replication is not tracked since the actual transfer happens in the
child process).
This includes a refactoring that makes tracking new instantaneous
metrics simpler.
PFCOUNT is technically speaking a write command, since the cached value
of the HLL is exposed in the data structure (design error, mea culpa), and
can be modified by PFCOUNT.
However if we flag PFCOUNT as "w", read only slaves can't execute the
command, which is a problem since there are environments where slaves
are used to scale PFCOUNT reads.
Nor it is possible to just prevent PFCOUNT to modify the data structure
in slaves, since without the cache we lose too much efficiency.
So while this commit allows slaves to create a temporary inconsistency
(the strings representing the HLLs in the master and slave can be
different in certain moments) it is actually harmless.
In the long run this should be probably fixed by turning the HLL into a
more opaque representation, for example by storing the cached value in
the part of the string which is not exposed (this should be possible
with SDS strings).
We need to remember what is the saving strategy of the current RDB child
process, since the configuration may be modified at runtime via CONFIG
SET and still we'll need to understand, when the child exists, what to
do and for what goal the process was initiated: to create an RDB file
on disk or to write stuff directly to slave's sockets.
Modified by @antirez since the original fix to genInfoString() looked
weak. Probably the clang analyzer complained about `section` being
possibly NULL, and strcasecmp() called with a NULL pointer. In the
practice this can never happen, still for the sake of correctness
the right fix is not to modify only the first call, but to set `section`
to the value of "default" if it happens to be NULL.
Closes#1660
PING can now be called with an additional arugment, behaving exactly
like the ECHO command. PING can now also be called in Pub/Sub mode (with
one more more subscriptions to channels / patterns) in order to trigger
the delivery of an asynchronous pong message with the optional payload.
This fixes issue #420.
The code tested many times if a client had active Pub/Sub subscriptions
by checking the length of a list and dictionary where the patterns and
channels are stored. This was substituted with a client flag called
REDIS_PUBSUB that is simpler to test for. Moreover in order to manage
this flag some code was refactored.
This commit is believed to have no effects in the behavior of the
server.
Previously, the command definition for the OBJECT command specified
a minimum of two args (and that it was variadic), which meant that
if you sent this:
OBJECT foo
When cluster was enabled, it would result in an assertion/SEGFAULT
when Redis was attempting to extract keys.
It appears that OBJECT is not variadic, and only ever takes 3 args.
https://gist.github.com/michael-grunder/25960ce1508396d0d36a
We introduce the distinction between slow and fast commands since those
are two different sources of latency. An O(1) or O(log N) command without
side effects (can't trigger deletion of large objects as a side effect of
its execution) if delayed is a symptom of inherent latency of the system.
A non-fast command (commands that may run large O(N) computations) if
delayed may just mean that the user is executing slow operations.
The advices LATENCY should provide in this two different cases are
different, so we log the two classes of commands in a separated way.
This fixes detection of wrong subcommand (that resulted in the default
all-commands output instead) and allows COMMAND INFO to be called
without arguments (resulting into an empty array) which is useful in
programmtically generated calls like the following (in Ruby):
redis.commands("command","info",*mycommands)
Note: mycommands may be empty.
Static was removed since it is needed in order to get symbols in stack
traces. Minor changes in the source code were operated to make it more
similar to the existing Redis code base.
COMMANDS returns a nested multibulk reply for each
command in the command table. The reply for each
command contains:
- command name
- arity
- array of command flags
- start key position
- end key position
- key offset step
- optional: if the keys are not deterministic and
Redis uses an internal key evaluation function,
the 6th field appears and is defined as a status
reply of: REQUIRES ARGUMENT PARSING
Cluster clients need to know where the keys are in each
command to implement proper routing to cluster nodes.
Redis commands can have multiple keys, keys at offset steps, or other
issues where you can't always assume the first element after
the command name is the cluster routing key.
Using the information exposed by COMMANDS, client implementations
can have live, accurate key extraction details for all commands.
Also implements COMMANDS INFO [commands...] to return only a
specific set of commands instead of all 160+ commands live in Redis.
This will be used by CLIENT KILL and is also a good way to ensure a
given client is still the same across CLIENT LIST calls.
The output of CLIENT LIST was modified to include the new ID, but this
change is considered to be backward compatible as the API does not imply
you can do positional parsing, since each filed as a different name.
Because of output buffer limits Redis internals had this idea of type of
clients: normal, pubsub, slave. It is possible to set different output
buffer limits for the three kinds of clients.
However all the macros and API were named after output buffer limit
classes, while the idea of a client type is a generic one that can be
reused.
This commit does two things:
1) Rename the API and defines with more general names.
2) Change the class of clients executing the MONITOR command from "slave"
to "normal".
"2" is a good idea because you want to have very special settings for
slaves, that are not a good idea for MONITOR clients that are instead
normal clients even if they are conceptually slave-alike (since it is a
push protocol).
The backward-compatibility breakage resulting from "2" is considered to
be minimal to care, since MONITOR is a debugging command, and because
anyway this change is not going to break the format or the behavior, but
just when a connection is closed on big output buffer issues.
The new ROLE command is designed in order to provide a client with
informations about the replication in a fast and easy to use way
compared to the INFO command where the same information is also
available.
Every log contains, just after the pid, a single character that provides
information about the role of an instance:
S - Slave
M - Master
C - Writing child
X - Sentinel