This avoids Helgrind complaining, but we are actually not using
atomicGet() to get the unixtime value for now: too many places where it
is used and given tha time_t is word-sized it should be safe in all the
archs we support as it is.
On the other hand, Helgrind, when Redis is compiled with "make helgrind"
in order to force the __sync macros, will detect the write in
updateCachedTime() as a read (because atomic functions are used) and
will not complain about races.
This commit also includes minor refactoring of mutex initializations and
a "helgrind" target in the Makefile.
This change attempts to switch to an hash function which mitigates
the effects of the HashDoS attack (denial of service attack trying
to force data structures to worst case behavior) while at the same time
providing Redis with an hash function that does not expect the input
data to be word aligned, a condition no longer true now that sds.c
strings have a varialbe length header.
Note that it is possible sometimes that even using an hash function
for which collisions cannot be generated without knowing the seed,
special implementation details or the exposure of the seed in an
indirect way (for example the ability to add elements to a Set and
check the return in which Redis returns them with SMEMBERS) may
make the attacker's life simpler in the process of trying to guess
the correct seed, however the next step would be to switch to a
log(N) data structure when too many items in a single bucket are
detected: this seems like an overkill in the case of Redis.
SPEED REGRESION TESTS:
In order to verify that switching from MurmurHash to SipHash had
no impact on speed, a set of benchmarks involving fast insertion
of 5 million of keys were performed.
The result shows Redis with SipHash in high pipelining conditions
to be about 4% slower compared to using the previous hash function.
However this could partially be related to the fact that the current
implementation does not attempt to hash whole words at a time but
reads single bytes, in order to have an output which is endian-netural
and at the same time working on systems where unaligned memory accesses
are a problem.
Further X86 specific optimizations should be tested, the function
may easily get at the same level of MurMurHash2 if a few optimizations
are performed.
I'm not sure how much test Jemalloc gets on ARM, moreover
compiling Redis with Jemalloc support in not very powerful
devices, like most ARMs people will build Redis on, is extremely
slow. It is possible to enable Jemalloc build anyway if needed
by using "make MALLOC=jemalloc".
However note that in architectures supporting 64 bit unaligned
accesses memcpy(...,...,8) is likely translated to a simple
word memory movement anyway.
They were under /deps since they originate from a different source tree,
however at this point they are very modified and we took ownership of
both the files making changes, fixing bugs, so there is no upgrade path
from the original code tree.
Given that, better to move the code under /src with proper dependencies
and with a more simpler editing experience.
Compiling Redis worked as a side effect of jemalloc target specifying
-ldl as needed linker options, otherwise it is not provided during
linking and dlopen() API will remain unresolved symbols.
This commit simplifies the implementation in a few ways:
1. zsetScore implementation improved a bit and moved into t_zset.c where
is now also used to implement the ZSCORE command.
2. Range extraction from the sorted set remains a separated
implementation from the one in t_zset.c, but was hyper-specialized in
order to avoid accumulating results into a list and remove the ones
outside the radius.
3. A new type is introduced: geoArray, which can accumulate geoPoint
structures in a vector with power of two expansion policy. This is
useful since we have to call qsort() against it before returning the
result to the user.
4. As a result of 1, 2, 3, the two files zset.c and zset.h are now
removed, including the function to merge two lists (now handled with
functions that can add elements to existing geoArray arrays) and
the machinery used in order to pass zset results.
5. geoPoint structure simplified because of the general code structure
simplification, so we no longer need to take references to objects.
6. Not counting the JSON removal the refactoring removes 200 lines of
code for the same functionalities, with a simpler to read
implementation.
7. GEORADIUS is now 2.5 times faster testing with 10k elements and a
radius resulting in 124 elements returned. However this is mostly a
side effect of the refactoring and simplification. More speed gains
can be achieved by trying to optimize the code.
For some reason the Geo PR included disabling the fact that Redis is
compiled with optimizations. Apparently it was just @mattsta attempt to
speedup the modify-compile-test iteration and there are no other
reasons.
Current todo:
- replace functions in zset.{c,h} with a new unified Redis
zset access API.
Once we get the zset interface fixed, we can squash
relevant commits in this branch and have one nice commit
to merge into unstable.
This commit adds:
- Geo commands
- Tests; runnable with: ./runtest --single unit/geo
- Geo helpers in deps/geohash-int/
- src/geo.{c,h} and src/geojson.{c,h} implementing geo commands
- Updated build configurations to get everything working
- TEMPORARY: src/zset.{c,h} implementing zset score and zset
range reading without writing to client output buffers.
- Modified linkage of one t_zset.c function for use in zset.c
Conflicts:
src/Makefile
src/redis.c
redis-check-dump is now named redis-check-rdb and it runs
as a mode of redis-server instead of an independent binary.
You can now use 'redis-server redis.conf --check-rdb' to check
the RDB defined in redis.conf. Using argument --check-rdb
checks the RDB and exits. We could potentially also allow
the server to continue starting if the RDB check succeeds.
This change also enables us to use RDB checking programatically
from inside Redis for certain failure conditions.
This replaces individual ziplist vs. linkedlist representations
for Redis list operations.
Big thanks for all the reviews and feedback from everybody in
https://github.com/antirez/redis/pull/2143