## Background
For redis master, one replica uses one copy of replication buffer, that is a big waste of memory,
more replicas more waste, and allocate/free memory for every reply list also cost much.
If we set client-output-buffer-limit small and write traffic is heavy, master may disconnect with
replicas and can't finish synchronization with replica. If we set client-output-buffer-limit big,
master may be OOM when there are many replicas that separately keep much memory.
Because replication buffers of different replica client are the same, one simple idea is that
all replicas only use one replication buffer, that will effectively save memory.
Since replication backlog content is the same as replicas' output buffer, now we
can discard replication backlog memory and use global shared replication buffer
to implement replication backlog mechanism.
## Implementation
I create one global "replication buffer" which contains content of replication stream.
The structure of "replication buffer" is similar to the reply list that exists in every client.
But the node of list is `replBufBlock`, which has `id, repl_offset, refcount` fields.
```c
/* Replication buffer blocks is the list of replBufBlock.
*
* +--------------+ +--------------+ +--------------+
* | refcount = 1 | ... | refcount = 0 | ... | refcount = 2 |
* +--------------+ +--------------+ +--------------+
* | / \
* | / \
* | / \
* Repl Backlog Replia_A Replia_B
*
* Each replica or replication backlog increments only the refcount of the
* 'ref_repl_buf_node' which it points to. So when replica walks to the next
* node, it should first increase the next node's refcount, and when we trim
* the replication buffer nodes, we remove node always from the head node which
* refcount is 0. If the refcount of the head node is not 0, we must stop
* trimming and never iterate the next node. */
/* Similar with 'clientReplyBlock', it is used for shared buffers between
* all replica clients and replication backlog. */
typedef struct replBufBlock {
int refcount; /* Number of replicas or repl backlog using. */
long long id; /* The unique incremental number. */
long long repl_offset; /* Start replication offset of the block. */
size_t size, used;
char buf[];
} replBufBlock;
```
So now when we feed replication stream into replication backlog and all replicas, we only need
to feed stream into replication buffer `feedReplicationBuffer`. In this function, we set some fields of
replication backlog and replicas to references of the global replication buffer blocks. And we also
need to check replicas' output buffer limit to free if exceeding `client-output-buffer-limit`, and trim
replication backlog if exceeding `repl-backlog-size`.
When sending reply to replicas, we also need to iterate replication buffer blocks and send its
content, when totally sending one block for replica, we decrease current node count and
increase the next current node count, and then free the block which reference is 0 from the
head of replication buffer blocks.
Since now we use linked list to manage replication backlog, it may cost much time for iterating
all linked list nodes to find corresponding replication buffer node. So we create a rax tree to
store some nodes for index, but to avoid rax tree occupying too much memory, i record
one per 64 nodes for index.
Currently, to make partial resynchronization as possible as much, we always let replication
backlog as the last reference of replication buffer blocks, backlog size may exceeds our setting
if slow replicas that reference vast replication buffer blocks, and this method doesn't increase
memory usage since they share replication buffer. To avoid freezing server for freeing unreferenced
replication buffer blocks when we need to trim backlog for exceeding backlog size setting,
we trim backlog incrementally (free 64 blocks per call now), and make it faster in
`beforeSleep` (free 640 blocks).
### Other changes
- `mem_total_replication_buffers`: we add this field in INFO command, it means the total
memory of replication buffers used.
- `mem_clients_slaves`: now even replica is slow to replicate, and its output buffer memory
is not 0, but it still may be 0, since replication backlog and replicas share one global replication
buffer, only if replication buffer memory is more than the repl backlog setting size, we consider
the excess as replicas' memory. Otherwise, we think replication buffer memory is the consumption
of repl backlog.
- Key eviction
Since all replicas and replication backlog share global replication buffer, we think only the
part of exceeding backlog size the extra separate consumption of replicas.
Because we trim backlog incrementally in the background, backlog size may exceeds our
setting if slow replicas that reference vast replication buffer blocks disconnect.
To avoid massive eviction loop, we don't count the delayed freed replication backlog into
used memory even if there are no replicas, i.e. we also regard this memory as replicas's memory.
- `client-output-buffer-limit` check for replica clients
It doesn't make sense to set the replica clients output buffer limit lower than the repl-backlog-size
config (partial sync will succeed and then replica will get disconnected). Such a configuration is
ignored (the size of repl-backlog-size will be used). This doesn't have memory consumption
implications since the replica client will share the backlog buffers memory.
- Drop replication backlog after loading data if needed
We always create replication backlog if server is a master, we need it because we put DELs in
it when loading expired keys in RDB, but if RDB doesn't have replication info or there is no rdb,
it is not possible to support partial resynchronization, to avoid extra memory of replication backlog,
we drop it.
- Multi IO threads
Since all replicas and replication backlog use global replication buffer, if I/O threads are enabled,
to guarantee data accessing thread safe, we must let main thread handle sending the output buffer
to all replicas. But before, other IO threads could handle sending output buffer of all replicas.
## Other optimizations
This solution resolve some other problem:
- When replicas disconnect with master since of out of output buffer limit, releasing the output
buffer of replicas may freeze server if we set big `client-output-buffer-limit` for replicas, but now,
it doesn't cause freezing.
- This implementation may mitigate reply list copy cost time(also freezes server) when one replication
has huge reply buffer and another replica can copy buffer for full synchronization. now, we just copy
reference info, it is very light.
- If we set replication backlog size big, it also may cost much time to copy replication backlog into
replica's output buffer. But this commit eliminates this problem.
- Resizing replication backlog size doesn't empty current replication backlog content.
I moved a bunch of stats in redisFork to be executed only on successful
fork, since they seem wrong to be done when it failed.
I guess when fork fails it does that immediately, no latency spike.
Following #9483 the daily CI exposed a few problems.
* The cluster creation code (uses redis-cli) is complicated to test with TLS enabled.
for now i'm just skipping them since the tests we run there don't really need that kind of coverage
* cluster port binding failures
note that `find_available_port` already looks for a free cluster port
but the code in `wait_server_started` couldn't detect the failure of binding
(the text it greps for wasn't found in the log)
## Intro
The purpose is to allow having different flags/ACL categories for
subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't)
We create a small command table for every command that has subcommands
and each subcommand has its own flags, etc. (same as a "regular" command)
This commit also unites the Redis and the Sentinel command tables
## Affected commands
CONFIG
Used to have "admin ok-loading ok-stale no-script"
Changes:
1. Dropped "ok-loading" in all except GET (this doesn't change behavior since
there were checks in the code doing that)
XINFO
Used to have "read-only random"
Changes:
1. Dropped "random" in all except CONSUMERS
XGROUP
Used to have "write use-memory"
Changes:
1. Dropped "use-memory" in all except CREATE and CREATECONSUMER
COMMAND
No changes.
MEMORY
Used to have "random read-only"
Changes:
1. Dropped "random" in PURGE and USAGE
ACL
Used to have "admin no-script ok-loading ok-stale"
Changes:
1. Dropped "admin" in WHOAMI, GENPASS, and CAT
LATENCY
No changes.
MODULE
No changes.
SLOWLOG
Used to have "admin random ok-loading ok-stale"
Changes:
1. Dropped "random" in RESET
OBJECT
Used to have "read-only random"
Changes:
1. Dropped "random" in ENCODING and REFCOUNT
SCRIPT
Used to have "may-replicate no-script"
Changes:
1. Dropped "may-replicate" in all except FLUSH and LOAD
CLIENT
Used to have "admin no-script random ok-loading ok-stale"
Changes:
1. Dropped "random" in all except INFO and LIST
2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY
STRALGO
No changes.
PUBSUB
No changes.
CLUSTER
Changes:
1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots
SENTINEL
No changes.
(note that DEBUG also fits, but we decided not to convert it since it's for
debugging and anyway undocumented)
## New sub-command
This commit adds another element to the per-command output of COMMAND,
describing the list of subcommands, if any (in the same structure as "regular" commands)
Also, it adds a new subcommand:
```
COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)]
```
which returns a set of all commands (unless filters), but excluding subcommands.
## Module API
A new module API, RM_CreateSubcommand, was added, in order to allow
module writer to define subcommands
## ACL changes:
1. Now, that each subcommand is actually a command, each has its own ACL id.
2. The old mechanism of allowed_subcommands is redundant
(blocking/allowing a subcommand is the same as blocking/allowing a regular command),
but we had to keep it, to support the widespread usage of allowed_subcommands
to block commands with certain args, that aren't subcommands (e.g. "-select +select|0").
3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference.
4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands
(e.g. "+client -client|kill"), which wasn't possible in the past.
5. It is also possible to use the allowed_firstargs mechanism with subcommand.
For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except
for setting the log level.
6. All of the ACL changes above required some amount of refactoring.
## Misc
1. There are two approaches: Either each subcommand has its own function or all
subcommands use the same function, determining what to do according to argv[0].
For now, I took the former approaches only with CONFIG and COMMAND,
while other commands use the latter approach (for smaller blamelog diff).
2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec.
4. Bugfix: GETNAME was missing from CLIENT's help message.
5. Sentinel and Redis now use the same table, with the same function pointer.
Some commands have a different implementation in Sentinel, so we redirect
them (these are ROLE, PUBLISH, and INFO).
6. Command stats now show the stats per subcommand (e.g. instead of stats just
for "config" you will have stats for "config|set", "config|get", etc.)
7. It is now possible to use COMMAND directly on subcommands:
COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and
can be used in functions lookupCommandBySds and lookupCommandByCString)
8. STRALGO is now a container command (has "help")
## Breaking changes:
1. Command stats now show the stats per subcommand (see (5) above)
Since the size of mode_t is platform dependant we handle the
`unixsocketperm` configuration as a generic int type.
mode_t is either an unsigned int or unsigned short (macOS) and
the range-limits allows for a simple cast to a mode_t.
Tracking invalidation messages were sometimes sent in inconsistent order,
before the command's reply rather than after.
In addition to that, they were sometimes embedded inside other commands
responses, like MULTI-EXEC and MGET.
Implement createPipe() to combine creating pipe and setting flags, also reduce
system calls by prioritizing pipe2() over pipe().
Without createPipe(), we have to call pipe() to create a pipe and then call some
functions (like anetCloexec() and anetNonBlock()) of anet.c to set flags respectively,
which leads to some extra system calls, now we can leverage pipe2() to combine
them and make the process of creating pipe more convergent in createPipe().
Co-authored-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
Co-authored-by: Oran Agra <oran@redislabs.com>
The new value indicates how long Redis wait to
acquire the GIL after sleep. This can help identify
problems where a module perform some background
operation for a long time (with the GIL held) and
blocks the Redis main thread.
Scenario:
1. client block on command `XREAD BLOCK 0 STREAMS mystream $`
2. in a module, calling `XADD mystream * field value` via lua from a timer callback
3. client will receive response after some latency up to 100ms
Reason:
When `XADD` signal the key `mystream` as ready, `beforeSleep` in next eventloop will call
`handleClientsBlockedOnKeys` to unblock the client and add pending data to write but not
actually install a write handler, so next redis will block in `aeApiPoll` up to 100ms given `hz`
config as default 10, pending data will be sent in another next eventloop by
`handleClientsWithPendingWritesUsingThreads`.
Calling `handleClientsBlockedOnKeys` before `handleClientsWithPendingWritesUsingThreads`
in `beforeSleep` solves the problem.
This change sets a low limit for multibulk and bulk length in the
protocol for unauthenticated connections, so that they can't easily
cause redis to allocate massive amounts of memory by sending just a few
characters on the network.
The new limits are 10 arguments of 16kb each (instead of 1m of 512mb)
Fixing CI test issues introduced in #8687
- valgrind warnings in readQueryFromClient when client was freed by processInputBuffer
- adding DEBUG pause-cron for tests not to be time dependent.
- skipping a test that depends on socket buffers / events not compatible with TLS
- making sure client got subscribed by not using deferring client
### Description
A mechanism for disconnecting clients when the sum of all connected clients is above a
configured limit. This prevents eviction or OOM caused by accumulated used memory
between all clients. It's a complimentary mechanism to the `client-output-buffer-limit`
mechanism which takes into account not only a single client and not only output buffers
but rather all memory used by all clients.
#### Design
The general design is as following:
* We track memory usage of each client, taking into account all memory used by the
client (query buffer, output buffer, parsed arguments, etc...). This is kept up to date
after reading from the socket, after processing commands and after writing to the socket.
* Based on the used memory we sort all clients into buckets. Each bucket contains all
clients using up up to x2 memory of the clients in the bucket below it. For example up
to 1m clients, up to 2m clients, up to 4m clients, ...
* Before processing a command and before sleep we check if we're over the configured
limit. If we are we start disconnecting clients from larger buckets downwards until we're
under the limit.
#### Config
`maxmemory-clients` max memory all clients are allowed to consume, above this threshold
we disconnect clients.
This config can either be set to 0 (meaning no limit), a size in bytes (possibly with MB/GB
suffix), or as a percentage of `maxmemory` by using the `%` suffix (e.g. setting it to `10%`
would mean 10% of `maxmemory`).
#### Important code changes
* During the development I encountered yet more situations where our io-threads access
global vars. And needed to fix them. I also had to handle keeps the clients sorted into the
memory buckets (which are global) while their memory usage changes in the io-thread.
To achieve this I decided to simplify how we check if we're in an io-thread and make it
much more explicit. I removed the `CLIENT_PENDING_READ` flag used for checking
if the client is in an io-thread (it wasn't used for anything else) and just used the global
`io_threads_op` variable the same way to check during writes.
* I optimized the cleanup of the client from the `clients_pending_read` list on client freeing.
We now store a pointer in the `client` struct to this list so we don't need to search in it
(`pending_read_list_node`).
* Added `evicted_clients` stat to `INFO` command.
* Added `CLIENT NO-EVICT ON|OFF` sub command to exclude a specific client from the
client eviction mechanism. Added corrosponding 'e' flag in the client info string.
* Added `multi-mem` field in the client info string to show how much memory is used up
by buffered multi commands.
* Client `tot-mem` now accounts for buffered multi-commands, pubsub patterns and
channels (partially), tracking prefixes (partially).
* CLIENT_CLOSE_ASAP flag is now handled in a new `beforeNextClient()` function so
clients will be disconnected between processing different clients and not only before sleep.
This new function can be used in the future for work we want to do outside the command
processing loop but don't want to wait for all clients to be processed before we get to it.
Specifically I wanted to handle output-buffer-limit related closing before we process client
eviction in case the two race with each other.
* Added a `DEBUG CLIENT-EVICTION` command to print out info about the client eviction
buckets.
* Each client now holds a pointer to the client eviction memory usage bucket it belongs to
and listNode to itself in that bucket for quick removal.
* Global `io_threads_op` variable now can contain a `IO_THREADS_OP_IDLE` value
indicating no io-threading is currently being executed.
* In order to track memory used by each clients in real-time we can't rely on updating
these stats in `clientsCron()` alone anymore. So now I call `updateClientMemUsage()`
(used to be `clientsCronTrackClientsMemUsage()`) after command processing, after
writing data to pubsub clients, after writing the output buffer and after reading from the
socket (and maybe other places too). The function is written to be fast.
* Clients are evicted if needed (with appropriate log line) in `beforeSleep()` and before
processing a command (before performing oom-checks and key-eviction).
* All clients memory usage buckets are grouped as follows:
* All clients using less than 64k.
* 64K..128K
* 128K..256K
* ...
* 2G..4G
* All clients using 4g and up.
* Added client-eviction.tcl with a bunch of tests for the new mechanism.
* Extended maxmemory.tcl to test the interaction between maxmemory and
maxmemory-clients settings.
* Added an option to flag a numeric configuration variable as a "percent", this means that
if we encounter a '%' after the number in the config file (or config set command) we
consider it as valid. Such a number is store internally as a negative value. This way an
integer value can be interpreted as either a percent (negative) or absolute value (positive).
This is useful for example if some numeric configuration can optionally be set to a percentage
of something else.
Co-authored-by: Oran Agra <oran@redislabs.com>
This commit introduced a new flag to the RM_Call:
'C' - Check if the command can be executed according to the ACLs associated with it.
Also, three new API's added to check if a command, key, or channel can be executed or accessed
by a user, according to the ACLs associated with it.
- RM_ACLCheckCommandPerm
- RM_ACLCheckKeyPerm
- RM_ACLCheckChannelPerm
The user for these API's is a RedisModuleUser object, that for a Module user returned by the RM_CreateModuleUser API, or for a general ACL user can be retrieved by these two new API's:
- RM_GetCurrentUserName - Retrieve the user name of the client connection behind the current context.
- RM_GetModuleUserFromUserName - Get a RedisModuleUser from a user name
As a result of getting a RedisModuleUser from name, it can now also access the general ACL users (not just ones created by the module).
This mean the already existing API RM_SetModuleUserACL(), can be used to change the ACL rules for such users.
This is similar to the recent addition of LMPOP/BLMPOP (#9373), but zset.
Syntax for the new ZMPOP command:
`ZMPOP numkeys [<key> ...] MIN|MAX [COUNT count]`
Syntax for the new BZMPOP command:
`BZMPOP timeout numkeys [<key> ...] MIN|MAX [COUNT count]`
Some background:
- ZPOPMIN/ZPOPMAX take only one key, and can return multiple elements.
- BZPOPMIN/BZPOPMAX take multiple keys, but return only one element from just one key.
- ZMPOP/BZMPOP can take multiple keys, and can return multiple elements from just one key.
Note that ZMPOP/BZMPOP can take multiple keys, it eventually operates on just on key.
And it will propagate as ZPOPMIN or ZPOPMAX with the COUNT option.
As new commands, if we can not pop any elements, the response like:
- ZMPOP: Return a NIL in both RESP2 and RESP3, unlike ZPOPMIN/ZPOPMAX return emptyarray.
- BZMPOP: Return a NIL in both RESP2 and RESP3 when timeout is reached, like BZPOPMIN/BZPOPMAX.
For the normal response is nested arrays in RESP2 and RESP3:
```
ZMPOP/BZMPOP
1) keyname
2) 1) 1) member1
2) score1
2) 1) member2
2) score2
In RESP2:
1) "myzset"
2) 1) 1) "three"
2) "3"
2) 1) "two"
2) "2"
In RESP3:
1) "myzset"
2) 1) 1) "three"
2) (double) 3
2) 1) "two"
2) (double) 2
```
Implements the [LIMIT limit] variant of SINTERCARD/ZINTERCARD.
Now with the LIMIT, we can stop the searching when cardinality
reaching the limit, and return the cardinality ASAP.
Note that in SINTERCARD, the old synatx was: `SINTERCARD key [key ...]`
In order to add a optional parameter, we must break the old synatx.
So the new syntax of SINTERCARD will be consistent with ZINTERCARD.
New syntax: `SINTERCARD numkeys key [key ...] [LIMIT limit]`.
Note that this means that SINTERCARD has a different syntax than
SINTER and SINTERSTORE (taking numkeys argument)
As for ZINTERCARD, we can easily add a optional parameter to it.
New syntax: `ZINTERCARD numkeys key [key ...] [LIMIT limit]`
The `cmd` argument was completely unused, and all the code that bothered to pass it was unnecessary.
This is a prepartion for a future commit that treats subcommands as commands
Fix#7297
The problem:
Today, there is no way for a client library or app to know the key name indexes for commands such as
ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them.
For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to
resolve each execution of these commands with COMMAND GETKEYS.
The solution:
Introducing key specs other than the legacy "range" (first,last,step)
The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates
the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery
of 0 or more key arguments.
A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will
obviously remain unchanged.
A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it
must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order
to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no
need to use GETKEYS.
Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array
containing details about the spec (specific meaning for each spec type)
The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write.
clients should ignore any unfamiliar flags.
In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of
key specs:
1. `start_search`: Given an array of args, indicate where we should start searching for keys
2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys.
### start_search step specs
- `index`: specify an argument index explicitly
- `index`: 0 based index (1 means the first command argument)
- `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears.
- `keyword`: the string to search for
- `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end)
Examples:
- `SET` has start_search of type `index` with value `1`
- `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]`
- `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]`
### find_keys step specs
- `range`: specify `[count, step, limit]`.
- `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last
- `step`: how many args should we skip after finding a key, in order to find the next one
- `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on.
- “keynum”: specify `[keynum_index, first_key_index, step]`.
- `keynum_index`: is relative to the return of the `start_search` spec.
- `first_key_index`: is relative to `keynum_index`.
- `step`: how many args should we skip after finding a key, in order to find the next one
Examples:
- `SET` has `range` of `[0,1,0]`
- `MSET` has `range` of `[-1,2,0]`
- `XREAD` has `range` of `[-1,1,2]`
- `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]`
- `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value
`[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun)
Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key
args of the vast majority of commands.
If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option.
Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will
start searching in the wrong index).
The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never
report false information (assuming the command syntax is correct).
For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will
report only a subset of all keys - hence the `incomplete` flag.
Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that
COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe
the STORE keyword spec, as the word "store" can appear anywhere in the command).
We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for
all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime.
Comments:
1. Redis doesn't internally use the new specs, they are only used for COMMAND output.
2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called
legacy_range, that, if possible, is built according to the new specs.
3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for
example).
"incomplete" specs:
the command we have issues with are MIGRATE, STRALGO, and SORT
for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is
actually the string "keys" will return just a subset of the keys (hence, it's "incomplete")
for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a
key spec that is both "incomplete" and of "unknown type"
if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have
its own parser) to retrieve the keys.
please note that all commands, apart from the three mentioned above, have "complete" key specs
The main idea is how to allow a master to load replication info from RDB file when rebooting, if master can load replication info it means that replicas may have the chance to psync with master, it can save much traffic.
The key point is we need guarantee safety and consistency, so there
are two differences between master and replica:
1. master would load the replication info as secondary ID and
offset, in case other masters have the same replid.
2. when master loading RDB, it would propagate expired keys as DEL
command to replication backlog, then replica can receive these
commands to delete stale keys.
p.s. the expired keys when RDB loading is useful for users, so
we show it as `rdb_last_load_keys_expired` and `rdb_last_load_keys_loaded` in info persistence.
Moreover, after load replication info, master should update
`no_replica_time` in case loading RDB cost too long time.
A write request may be paused unexpectedly because `server.client_pause_end_time` is old.
**Recreate this:**
redis-cli -p 6379
127.0.0.1:6379> client pause 500000000 write
OK
127.0.0.1:6379> client unpause
OK
127.0.0.1:6379> client pause 10000 write
OK
127.0.0.1:6379> set key value
The write request `set key value` is paused util the timeout of 500000000 milliseconds was reached.
**Fix:**
reset `server.client_pause_end_time` = 0 in `unpauseClients`
We want to add COUNT option for BLPOP.
But we can't do it without breaking compatibility due to the command arguments syntax.
So this commit introduce two new commands.
Syntax for the new LMPOP command:
`LMPOP numkeys [<key> ...] LEFT|RIGHT [COUNT count]`
Syntax for the new BLMPOP command:
`BLMPOP timeout numkeys [<key> ...] LEFT|RIGHT [COUNT count]`
Some background:
- LPOP takes one key, and can return multiple elements.
- BLPOP takes multiple keys, but returns one element from just one key.
- LMPOP can take multiple keys and return multiple elements from just one key.
Note that LMPOP/BLMPOP can take multiple keys, it eventually operates on just one key.
And it will propagate as LPOP or RPOP with the COUNT option.
As a new command, it still return NIL if we can't pop any elements.
For the normal response is nested arrays in RESP2 and RESP3, like:
```
LMPOP/BLMPOP
1) keyname
2) 1) element1
2) element2
```
I.e. unlike BLPOP that returns a key name and one element so it uses a flat array,
and LPOP that returns multiple elements with no key name, and again uses a flat array,
this one has to return a nested array, and it does for for both RESP2 and RESP3 (like SCAN does)
Some discuss can see: #766#8824
Add two INFO metrics:
```
total_active_defrag_time:12345
current_active_defrag_time:456
```
`current_active_defrag_time` if greater than 0, means how much time has
passed since active defrag started running. If active defrag stops, this metric is reset to 0.
`total_active_defrag_time` means total time the fragmentation
was over the defrag threshold since the server started.
This is a followup PR for #9031
When a replica paused, it would not apply any commands event the command comes from master, if we feed the non-applied command to replication stream, the replication offset would be wrong, and data would be lost after failover(since replica's `master_repl_offset` grows but command is not applied).
To fix it, here are the changes:
* Don't update replica's replication offset or propagate commands to sub-replicas when it's paused in `commandProcessed`.
* Show `slave_read_repl_offset` in info reply.
* Add an assert to make sure master client should never be blocked unless pause or module (some modules may use block way to do background (parallel) processing and forward original block module command to the replica, it's not a good way but it can work, so the assert excludes module now, but someday in future all modules should rewrite block command to propagate like what `BLPOP` does).
1. MIGRATE has a potnetial key arg in argv[3]. It should be reflected in the command table.
2. getKeysUsingCommandTable should never free getKeysResult, it is always freed by the caller)
The reason we never encountered this double-free bug is that almost always getKeysResult
uses the statis buffer and doesn't allocate a new one.
* Enhance dict to support arbitrary metadata carried in dictEntry
Co-authored-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
* Rewrite slot-to-keys mapping to linked lists using dict entry metadata
This is a memory enhancement for Redis Cluster.
The radix tree slots_to_keys (which duplicates all key names prefixed with their
slot number) is replaced with a linked list for each slot. The dict entries of
the same cluster slot form a linked list and the pointers are stored as metadata
in each dict entry of the main DB dict.
This commit also moves the slot-to-key API from db.c to cluster.c.
Co-authored-by: Jim Brunner <brunnerj@amazon.com>
When `decr_step` is greater than `oldlimit`, the final `bestlimit` may be invalid.
For example, oldlimit = 10, decr_step = 16.
Current bestlimit = 15 and setrlimit() failed. Since bestlimit is less than decr_step , then exit the loop.
The final bestlimit is larger than oldlimit but is invalid.
Note that this only matters if the system fd limit is below 16, so unlikely to have any actual effect.
The order of setting things up follows some reasoning: Setup signal
handlers first because a signal could fire at any time. Adjust OOM score
before everything else to assist the OOM killer if memory resources are
low.
The trigger for this is a valgrind test failure which resulted with the
child catching a SIGUSR1 before initializing the handler.
Part one of implementing #8702 (taking hashes first before other types)
## Description of the feature
1. Change ziplist encoded hash objects to listpack encoding.
2. Convert existing ziplists on RDB loading time. an O(n) operation.
## Rdb format changes
1. Add RDB_TYPE_HASH_LISTPACK rdb type.
2. Bump RDB_VERSION to 10
## Interface changes
1. New `hash-max-listpack-entries` config is an alias for `hash-max-ziplist-entries` (same with `hash-max-listpack-value`)
2. OBJECT ENCODING will return `listpack` instead of `ziplist`
## Listpack improvements:
1. Support direct insert, replace integer element (rather than convert back and forth from string)
3. Add more listpack capabilities to match the ziplist ones (like `lpFind`, `lpRandomPairs` and such)
4. Optimize element length fetching, avoid multiple calculations
5. Use inline to avoid function call overhead.
## Tests
1. Add a new test to the RDB load time conversion
2. Adding the listpack unit tests. (based on the one in ziplist.c)
3. Add a few "corrupt payload: fuzzer findings" tests, and slightly modify existing ones.
Co-authored-by: Oran Agra <oran@redislabs.com>
Reduce dict struct memory overhead
on 64bit dict size goes down from jemalloc's 96 byte bin to its 56 byte bin.
summary of changes:
- Remove `privdata` from callbacks and dict creation. (this affects many files, see "Interface change" below).
- Meld `dictht` struct into the `dict` struct to eliminate struct padding. (this affects just dict.c and defrag.c)
- Eliminate the `sizemask` field, can be calculated from size when needed.
- Convert the `size` field into `size_exp` (exponent), utilizes one byte instead of 8.
Interface change: pass dict pointer to dict type call back functions.
This is instead of passing the removed privdata field. In the future if
we'd like to have private data in the callbacks we can extract it from
the dict type. We can extend dictType to include a custom dict struct
allocator and use it to allocate more data at the end of the dict
struct. This data can then be used to store private data later acccessed
by the callbacks.
## Backgroud
As we know, after `fork`, one process will copy pages when writing data to these
pages(CoW), and another process still keep old pages, they totally cost more memory.
For redis, we suffered that redis consumed much memory when the fork child is serializing
key/values, even that maybe cause OOM.
But actually we find, in redis fork child process, the child process don't need to keep some
memory and parent process may write or update that, for example, child process will never
access the key-value that is serialized but users may update it in parent process.
So we think it may reduce COW if the child process release memory that it is not needed.
## Implementation
For releasing key value in child process, we may think we call `decrRefCount` to free memory,
but i find the fork child process still use much memory when we don't write any data to redis,
and it costs much more time that slows down bgsave. Maybe because memory allocator doesn't
really release memory to OS, and it may modify some inner data for this free operation, especially
when we free small objects.
Moreover, CoW is based on pages, so it is a easy way that we only free the memory bulk that is
not less than kernel page size. madvise(MADV_DONTNEED) can quickly release specified region
pages to OS bypassing memory allocator, and allocator still consider that this memory still is used
and don't change its inner data.
There are some buffers we can release in the fork child process:
- **Serialized key-values**
the fork child process never access serialized key-values, so we try to free them.
Because we only can release big bulk memory, and it is time consumed to iterate all
items/members/fields/entries of complex data type. So we decide to iterate them and
try to release them only when their average size of item/member/field/entry is more
than page size of OS.
- **Replication backlog**
Because replication backlog is a cycle buffer, it will be changed quickly if redis has heavy
write traffic, but in fork child process, we don't need to access that.
- **Client buffers**
If clients have requests during having the fork child process, clients' buffer also be changed
frequently. The memory includes client query buffer, output buffer, and client struct used memory.
To get child process peak private dirty memory, we need to count peak memory instead
of last used memory, because the child process may continue to release memory (since
COW used to only grow till now, the last was equivalent to the peak).
Also we're adding a new `current_cow_peak` info variable (to complement the existing
`current_cow_size`)
Co-authored-by: Oran Agra <oran@redislabs.com>
Add SINTERCARD and ZINTERCARD commands that are similar to
ZINTER and SINTER but only return the cardinality with minimum
processing and memory overheads.
Co-authored-by: Oran Agra <oran@redislabs.com>
1. In sendBulkToSlave, we used LL_VERBOSE in the past, changed to
LL_WARNING. (all the other places that do freeClient(slave) use LL_WARNING)
2. The old style LOG_WARNING, chang it to LL_WARNING. Introduced in an
old pr (#1690).
Add NX, XX, GT, and LT flags to EXPIRE, PEXPIRE, EXPIREAT, PEXAPIREAT.
- NX - only modify the TTL if no TTL is currently set
- XX - only modify the TTL if there is a TTL currently set
- GT - only increase the TTL (considering non-volatile keys as infinite expire time)
- LT - only decrease the TTL (considering non-volatile keys as infinite expire time)
return value of the command is 0 when the operation was skipped due to one of these flags.
Signed-off-by: Ning Sun <sunng@protonmail.com>
Add two INFO metrics:
```
total_eviction_exceeded_time:69734
current_eviction_exceeded_time:10230
```
`current_eviction_exceeded_time` if greater than 0, means how much time current used memory is greater than `maxmemory`. And we are still over the maxmemory. If used memory is below `maxmemory`, this metric is reset to 0.
`total_eviction_exceeded_time` means total time used memory is greater than `maxmemory` since server startup.
The units of these two metrics are ms.
Co-authored-by: Oran Agra <oran@redislabs.com>
- SELECT and WAIT don't read or write from the keyspace (unlike DEL, EXISTS, EXPIRE, DBSIZE, KEYS, etc).
they're more similar to AUTH and HELLO (and maybe PING and COMMAND).
they only affect the current connection, not the server state, so they should be `@connection`, not `@keyspace`
- ROLE, like LASTSAVE is `@admin` (and `@dangerous` like INFO)
- ASKING, READONLY, READWRITE are `@connection` too (not `@keyspace`)
- Additionally, i'm now documenting the exact meaning of each ACL category so it's clearer which commands belong where.
There are two issues fixed in this commit:
1. we want to fail the EXEC command in case there is a watched key that's logically
expired but not yet deleted by active expire or lazy expire.
2. we saw that currently cache time is update in every `call()` (including nested calls),
this time is being also being use for the isKeyExpired comparison, we want to update
the cache time only in the first call (execCommand)
Co-authored-by: Oran Agra <oran@redislabs.com>
redis-check-aof/redis-check-rdb.
Related to #9176. Before this commit, redis-server starts as
redis-check-aof/redis-check-rdb if the directory it is started from
contains the string redis-check-aof/redis-check-rdb. We check the
executable name instead of directory.
when tracking the peak, don't reset the peak to 0, reset it to the
maximum of the current used, and the planned to be used by the current
arg.
when shrining, split the two separate conditions.
the idle time shrinking will remove all free space.
but the peak based shrinking will keep room for the current arg.
when we resize due to a peak (rahter than idle time), don't trim all
unused space, let the qbuf keep a size that's sufficient for the
currently process bulklen, and the current peak.
Co-authored-by: sundb <sundbcn@gmail.com>
Co-authored-by: yoav-steinberg <yoav@monfort.co.il>
1. querybuf_peak has not been updated correctly in readQueryFromClient.
2. qbuf shrinking uses sdsalloc instead of sdsAllocSize
see more details in issue #4983
Before this commit, redis-server starts in sentinel mode if the first startup
argument has the string redis-sentinel, so redis also starts in sentinel mode
if the directory it was started from contains the string redis-sentinel.
Now we check the executable name instead of directory.
Some examples:
1. Execute ./redis-sentinel/redis/src/redis-sentinel, starts in sentinel mode.
2. Execute ./redis-sentinel/redis/src/redis-server, starts in server mode,
but before, redis will start in sentinel mode.
3. Execute ./redis-sentinel/redis/src/redis-server --sentinel, of course, like
before, starts in sentinel mode.