The connection API may create an accepted connection object in an error
state, and callers are expected to check it before attempting to use it.
Co-authored-by: mrpre <mrpre@163.com>
- the test now waits for specific set of log messages rather than wait for
timeout looking for just one message.
- we don't wanna sample the current length of the log after an action, due
to a race, we need to start the search from the line number of the last
message we where waiting for.
- when attempting to trigger a full sync, use multi-exec to avoid a race
where the replica manages to re-connect before we completed the set of
actions that should force a full sync.
- fix verify_log_message which was broken and unused
Initialize and configure OpenSSL even when tls-port is not used, because
we may still have tls-cluster or tls-replication.
Also, make sure to reconfigure OpenSSL when these parameters are changed
as TLS could have been enabled for the first time.
Initialize and configure OpenSSL even when tls-port is not used, because
we may still have tls-cluster or tls-replication.
Also, make sure to reconfigure OpenSSL when these parameters are changed
as TLS could have been enabled for the first time.
on ci.redis.io the test fails a lot, reporting that bgsave didn't end.
increaseing the timeout we wait for that bgsave to get aborted.
in addition to that, i also verify that it indeed got aborted by
checking that the save counter wasn't reset.
add another test to verify that a successful bgsave indeed resets the
change counter.
this code is in use only if the master is disk-based, and the replica is
diskless. In this case we use a buffered reader, but we must avoid reading
past the rdb file, into the command stream. which Luckly rdb.c doesn't
really attempt to do (it knows how much it should read).
When rioConnRead detects that the extra buffering attempt reaches beyond
the read limit it should read less, but if the caller actually requested
more, then it should return with an error rather than a short read. the
bug would have resulted in short read.
in order to fix it, the code must consider the real requested size, and
not the extra buffering size.
in cases where you have
test name {
start_server {
start_server {
assert
}
}
}
the exception will be thrown to the test proc, and the servers are
supposed to be killed on the way out. but it seems there was always a
bug of not cleaning the server stack, and recently (#7404) we started
relying on that stack in order to kill them, so with that bug sometimes
we would have tried to kill the same server twice, and leave one alive.
luckly, in most cases the pattern is:
start_server {
test name {
}
}
This re-implements the redis-cli --pipe test so it no longer depends on a close feature available only in TCL 8.6.
Basically what this test does is run redis-cli --pipe, generates a bunch of commands and pipes them through redis-cli, and inspects the result in both Redis and the redis-cli output.
To do that, we need to close stdin for redis-cli to indicate we're done so it can flush its buffers and exit. TCL has bi-directional channels can only offers a way to "one-way close" a channel with TCL 8.6. To work around that, we now generate the commands into a file and feed that file to redis-cli directly.
As we're writing to an actual file, the number of commands is now reduced.
Before that PR, processCommand() did not notice that cmd could be a module
command in which case getkeys_proc member has a different meaning.
The outcome was that a module command which doesn't take any key names in its
arguments (similar to SLOWLOG) would be handled as if it might have key name arguments
(similar to MEMORY), would consider cluster redirect but will end up with 0 keys
after an excessive call to getKeysFromCommand, and eventually do the right thing.
Since the dynamic allocations in raxIterator are only used for deep walks, memory
leak due to missing call to raxStop can only happen for rax with key names longer
than 32 bytes.
Out of all the missing calls, the only ones that may lead to a leak are the rax
for consumer groups and consumers, and these were only in AOFRW and rdbSave, which
normally only happen in fork or at shutdown.
Before this commit, processCommand() did not notice that cmd could be a module command
which declared `getkeys-api` and handled it for the purpose of cluster redirect it
as if it doesn't use any keys.
This commit fixed it by reusing the codes in addReplyCommand().
It will never happen that "lp != NULL && lp_bytes >= server.stream_node_max_bytes".
Assume that "lp != NULL && lp_bytes >= server.stream_node_max_bytes",
we got the following conditions:
a. lp != NULL
b. lp_bytes >= server.stream_node_max_bytes
If server.stream_node_max_bytes is 0, given condition a, condition b is always satisfied
If server.stream_node_max_bytes is not 0, given condition a and condition b, the codes just a
few lines above set lp to NULL, a controdiction with condition a
So that condition b is recundant. We could delete it safely.
Specifically, the key passed to the module aof_rewrite callback is a stack allocated robj. When passing it to RedisModule_EmitAOF (with appropriate "s" fmt string) redis used to panic when trying to inc the ref count of the stack allocated robj. Now support such robjs by coying them to a new heap robj. This doesn't affect performance because using the alternative "c" or "b" format strings also copies the input to a new heap robj.
in case the rdb child failed, crashed or terminated unexpectedly redis
would have marked the replica clients with repl_put_online_on_ack and
then kill them only after a minute when no ack was received.
it would not stream anything to these connections, so the only effect of
this bug is a delay of 1 minute in the replicas attempt to re-connect.
Before this commit, the output of "./runtest-cluster --help" is incorrect.
After this commit, the format of the following 3 output is consistent:
./runtest --help
./runtest-cluster --help
./runtest-sentinel --help
interestingly the latency monitor test fails because valgrind is slow
enough so that the time inside PEXPIREAT command from the moment of
the first mstime() call to get the basetime until checkAlreadyExpired
calls mstime() again is more than 1ms, and that test was too sensitive.
using this opportunity to speed up the test (unrelated to the failure)
the fix is just the longer time passed to PEXPIRE.
in the majority of the cases (on this rarely used feature) we want to
stop and be able to connect to the shard with redis-cli.
since these are two different processes interracting with the tty we
need to stop both, and we'll have to hit enter twice, but it's not that
bad considering it is rarely used.
* update daily CI to include cluster and sentinel tests
* update daily CI to run when creating a new release
* update release scripts to work on the new redis.io hosts
* fix description about ZIP_BIG_PREVLEN(the code is ok), it's similar to
antirez#4705
* fix description about ziplist entry encoding field (the code is ok),
the max length should be 2^32 - 1 when encoding is 5 bytes