The following error commands will crash redis-server:
```
> get|
Error: Server closed the connection
> get|set
Error: Server closed the connection
> get|other
```
The reason is in #9504, we use `lookupCommandBySds` for find the
container command. And it split the command (argv[0]) with `|`.
If we input something like `get|other`, after the split, `get`
will become a valid command name, pass the `ERR unknown command`
check, and finally crash in `addReplySubcommandSyntaxError`
In this case we do not need to split the command name with `|`
and just look in the commands dict to find if `argv[0]` is a
container command.
So this commit introduce a new function call `isContainerCommandBySds`
that it will return true if a command name is a container command.
Also with the old code, there is a incorrect error message:
```
> config|get set
(error) ERR Unknown subcommand or wrong number of arguments for 'set'. Try CONFIG|GET HELP.
```
The crash was reported in #10070.
Fix#9410
Crucial for the ms and sequence deltas, but I changed all
calls, just in case (e.g. "flags")
Before this commit:
`ms_delta` and `seq_delta` could have overflown, causing `currid` to be wrong,
which in turn would cause `streamTrim` to trim the entire rax node (see new test)
# Redis Function Libraries
This PR implements Redis Functions Libraries as describe on: https://github.com/redis/redis/issues/9906.
Libraries purpose is to provide a better code sharing between functions by allowing to create multiple
functions in a single command. Functions that were created together can safely share code between
each other without worrying about compatibility issues and versioning.
Creating a new library is done using 'FUNCTION LOAD' command (full API is described below)
This PR introduces a new struct called libraryInfo, libraryInfo holds information about a library:
* name - name of the library
* engine - engine used to create the library
* code - library code
* description - library description
* functions - the functions exposed by the library
When Redis gets the `FUNCTION LOAD` command it creates a new empty libraryInfo.
Redis passes the `CODE` to the relevant engine alongside the empty libraryInfo.
As a result, the engine will create one or more functions by calling 'libraryCreateFunction'.
The new funcion will be added to the newly created libraryInfo. So far Everything is happening
locally on the libraryInfo so it is easy to abort the operation (in case of an error) by simply
freeing the libraryInfo. After the library info is fully constructed we start the joining phase by
which we will join the new library to the other libraries currently exist on Redis.
The joining phase make sure there is no function collision and add the library to the
librariesCtx (renamed from functionCtx). LibrariesCtx is used all around the code in the exact
same way as functionCtx was used (with respect to RDB loading, replicatio, ...).
The only difference is that apart from function dictionary (maps function name to functionInfo
object), the librariesCtx contains also a libraries dictionary that maps library name to libraryInfo object.
## New API
### FUNCTION LOAD
`FUNCTION LOAD <ENGINE> <LIBRARY NAME> [REPLACE] [DESCRIPTION <DESCRIPTION>] <CODE>`
Create a new library with the given parameters:
* ENGINE - REPLACE Engine name to use to create the library.
* LIBRARY NAME - The new library name.
* REPLACE - If the library already exists, replace it.
* DESCRIPTION - Library description.
* CODE - Library code.
Return "OK" on success, or error on the following cases:
* Library name already taken and REPLACE was not used
* Name collision with another existing library (even if replace was uses)
* Library registration failed by the engine (usually compilation error)
## Changed API
### FUNCTION LIST
`FUNCTION LIST [LIBRARYNAME <LIBRARY NAME PATTERN>] [WITHCODE]`
Command was modified to also allow getting libraries code (so `FUNCTION INFO` command is no longer
needed and removed). In addition the command gets an option argument, `LIBRARYNAME` allows you to
only get libraries that match the given `LIBRARYNAME` pattern. By default, it returns all libraries.
### INFO MEMORY
Added number of libraries to `INFO MEMORY`
### Commands flags
`DENYOOM` flag was set on `FUNCTION LOAD` and `FUNCTION RESTORE`. We consider those commands
as commands that add new data to the dateset (functions are data) and so we want to disallows
to run those commands on OOM.
## Removed API
* FUNCTION CREATE - Decided on https://github.com/redis/redis/issues/9906
* FUNCTION INFO - Decided on https://github.com/redis/redis/issues/9899
## Lua engine changes
When the Lua engine gets the code given on `FUNCTION LOAD` command, it immediately runs it, we call
this run the loading run. Loading run is not a usual script run, it is not possible to invoke any
Redis command from within the load run.
Instead there is a new API provided by `library` object. The new API's:
* `redis.log` - behave the same as `redis.log`
* `redis.register_function` - register a new function to the library
The loading run purpose is to register functions using the new `redis.register_function` API.
Any attempt to use any other API will result in an error. In addition, the load run is has a time
limit of 500ms, error is raise on timeout and the entire operation is aborted.
### `redis.register_function`
`redis.register_function(<function_name>, <callback>, [<description>])`
This new API allows users to register a new function that will be linked to the newly created library.
This API can only be called during the load run (see definition above). Any attempt to use it outside
of the load run will result in an error.
The parameters pass to the API are:
* function_name - Function name (must be a Lua string)
* callback - Lua function object that will be called when the function is invokes using fcall/fcall_ro
* description - Function description, optional (must be a Lua string).
### Example
The following example creates a library called `lib` with 2 functions, `f1` and `f1`, returns 1 and 2 respectively:
```
local function f1(keys, args)
return 1
end
local function f2(keys, args)
return 2
end
redis.register_function('f1', f1)
redis.register_function('f2', f2)
```
Notice: Unlike `eval`, functions inside a library get the KEYS and ARGV as arguments to the
functions and not as global.
### Technical Details
On the load run we only want the user to be able to call a white list on API's. This way, in
the future, if new API's will be added, the new API's will not be available to the load run
unless specifically added to this white list. We put the while list on the `library` object and
make sure the `library` object is only available to the load run by using [lua_setfenv](https://www.lua.org/manual/5.1/manual.html#lua_setfenv) API. This API allows us to set
the `globals` of a function (and all the function it creates). Before starting the load run we
create a new fresh Lua table (call it `g`) that only contains the `library` API (we make sure
to set global protection on this table just like the general global protection already exists
today), then we use [lua_setfenv](https://www.lua.org/manual/5.1/manual.html#lua_setfenv)
to set `g` as the global table of the load run. After the load run finished we update `g`
metatable and set `__index` and `__newindex` functions to be `_G` (Lua default globals),
we also pop out the `library` object as we do not need it anymore.
This way, any function that was created on the load run (and will be invoke using `fcall`) will
see the default globals as it expected to see them and will not have the `library` API anymore.
An important outcome of this new approach is that now we can achieve a distinct global table
for each library (it is not yet like that but it is very easy to achieve it now). In the future we can
decide to remove global protection because global on different libraries will not collide or we
can chose to give different API to different libraries base on some configuration or input.
Notice that this technique was meant to prevent errors and was not meant to prevent malicious
user from exploit it. For example, the load run can still save the `library` object on some local
variable and then using in `fcall` context. To prevent such a malicious use, the C code also make
sure it is running in the right context and if not raise an error.
Callers of redisFork() are logging `strerror(errno)` on failure.
`errno` is not set when there is already a child process, causing printing
current value of errno which was set before `redisFork()` call.
Setting errno to EEXIST on this failure to provide more meaningful error message.
# Short description
The Redis extended latency stats track per command latencies and enables:
- exporting the per-command percentile distribution via the `INFO LATENCYSTATS` command.
**( percentile distribution is not mergeable between cluster nodes ).**
- exporting the per-command cumulative latency distributions via the `LATENCY HISTOGRAM` command.
Using the cumulative distribution of latencies we can merge several stats from different cluster nodes
to calculate aggregate metrics .
By default, the extended latency monitoring is enabled since the overhead of keeping track of the
command latency is very small.
If you don't want to track extended latency metrics, you can easily disable it at runtime using the command:
- `CONFIG SET latency-tracking no`
By default, the exported latency percentiles are the p50, p99, and p999.
You can alter them at runtime using the command:
- `CONFIG SET latency-tracking-info-percentiles "0.0 50.0 100.0"`
## Some details:
- The total size per histogram should sit around 40 KiB. We only allocate those 40KiB when a command
was called for the first time.
- With regards to the WRITE overhead As seen below, there is no measurable overhead on the achievable
ops/sec or full latency spectrum on the client. Including also the measured redis-benchmark for unstable
vs this branch.
- We track from 1 nanosecond to 1 second ( everything above 1 second is considered +Inf )
## `INFO LATENCYSTATS` exposition format
- Format: `latency_percentiles_usec_<CMDNAME>:p0=XX,p50....`
## `LATENCY HISTOGRAM [command ...]` exposition format
Return a cumulative distribution of latencies in the format of a histogram for the specified command names.
The histogram is composed of a map of time buckets:
- Each representing a latency range, between 1 nanosecond and roughly 1 second.
- Each bucket covers twice the previous bucket's range.
- Empty buckets are not printed.
- Everything above 1 sec is considered +Inf.
- At max there will be log2(1000000000)=30 buckets
We reply a map for each command in the format:
`<command name> : { `calls`: <total command calls> , `histogram` : { <bucket 1> : latency , < bucket 2> : latency, ... } }`
Co-authored-by: Oran Agra <oran@redislabs.com>
Following #10038.
This PR introduces two changes.
1. Show the elapsed time of a single test in the test output, in order to have a more
detailed understanding of the changes in test run time.
2. Speedup two tests related to `key-load-delay` configuration.
other tests do not seem to be affected by #10003.
Creating fork (or even a foreground SAVE) during a transaction breaks the atomicity of the transaction.
In addition to that, it could mess up the propagated transaction to the AOF file.
This change blocks SAVE, PSYNC, SYNC and SHUTDOWN from being executed inside MULTI-EXEC.
It does that by adding a command flag, so that modules can flag their commands with that flag too.
Besides it changes BGSAVE, BGREWRITEAOF, and CONFIG SET appendonly, to turn the
scheduled flag instead of forking righ taway.
Other changes:
* expose `protected`, `no-async-loading`, and `no_multi` flags in COMMAND command
* add a test to validate propagation of FLUSHALL inside a transaction.
* add a test to validate how CONFIG SET that errors reacts in a transaction
Co-authored-by: Oran Agra <oran@redislabs.com>
This would mean that the effects of `CONFIG SET maxmemory` may not be visible once the command returns.
That could anyway happen since incremental eviction was added in redis 6.2 (see #7653)
We do this to fix one of the propagation bugs about eviction see #9890 and #10014.
Implement Multi-Part AOF mechanism to avoid overheads during AOFRW.
Introducing a folder with multiple AOF files tracked by a manifest file.
The main issues with the the original AOFRW mechanism are:
* buffering of commands that are processed during rewrite (consuming a lot of RAM)
* freezes of the main process when the AOFRW completes to drain the remaining part of the buffer and fsync it.
* double disk IO for the data that arrives during AOFRW (had to be written to both the old and new AOF files)
The main modifications of this PR:
1. Remove the AOF rewrite buffer and related code.
2. Divide the AOF into multiple files, they are classified as two types, one is the the `BASE` type,
it represents the full amount of data (Maybe AOF or RDB format) after each AOFRW, there is only
one `BASE` file at most. The second is `INCR` type, may have more than one. They represent the
incremental commands since the last AOFRW.
3. Use a AOF manifest file to record and manage these AOF files mentioned above.
4. The original configuration of `appendfilename` will be the base part of the new file name, for example:
`appendonly.aof.1.base.rdb` and `appendonly.aof.2.incr.aof`
5. Add manifest-related TCL tests, and modified some existing tests that depend on the `appendfilename`
6. Remove the `aof_rewrite_buffer_length` field in info.
7. Add `aof-disable-auto-gc` configuration. By default we're automatically deleting HISTORY type AOFs.
It also gives users the opportunity to preserve the history AOFs. just for testing use now.
8. Add AOFRW limiting measure. When the AOFRW failures reaches the threshold (3 times now),
we will delay the execution of the next AOFRW by 1 minute. If the next AOFRW also fails, it will be
delayed by 2 minutes. The next is 4, 8, 16, the maximum delay is 60 minutes (1 hour). During the limit
period, we can still use the 'bgrewriteaof' command to execute AOFRW immediately.
9. Support upgrade (load) data from old version redis.
10. Add `appenddirname` configuration, as the directory name of the append only files. All AOF files and
manifest file will be placed in this directory.
11. Only the last AOF file (BASE or INCR) can be truncated. Otherwise redis will exit even if
`aof-load-truncated` is enabled.
Co-authored-by: Oran Agra <oran@redislabs.com>
This commit implements a sharded pubsub implementation based off of shard channels.
Co-authored-by: Harkrishn Patro <harkrisp@amazon.com>
Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
This commit adds DUMP RESTORES tests for the -x and -X options.
I wanted to add it in #9980 which introduce the -X option, but
back then i failed due to some errors (related to redis-cli call).
To avoid data loss, this commit adds a grace period for lagging replicas to
catch up the replication offset.
Done:
* Wait for replicas when shutdown is triggered by SIGTERM and SIGINT.
* Wait for replicas when shutdown is triggered by the SHUTDOWN command. A new
blocked client type BLOCKED_SHUTDOWN is introduced, allowing multiple clients
to call SHUTDOWN in parallel.
Note that they don't expect a response unless an error happens and shutdown is aborted.
* Log warning for each replica lagging behind when finishing shutdown.
* CLIENT_PAUSE_WRITE while waiting for replicas.
* Configurable grace period 'shutdown-timeout' in seconds (default 10).
* New flags for the SHUTDOWN command:
- NOW disables the grace period for lagging replicas.
- FORCE ignores errors writing the RDB or AOF files which would normally
prevent a shutdown.
- ABORT cancels ongoing shutdown. Can't be combined with other flags.
* New field in the output of the INFO command: 'shutdown_in_milliseconds'. The
value is the remaining maximum time to wait for lagging replicas before
finishing the shutdown. This field is present in the Server section **only**
during shutdown.
Not directly related:
* When shutting down, if there is an AOF saving child, it is killed **even** if AOF
is disabled. This can happen if BGREWRITEAOF is used when AOF is off.
* Client pause now has end time and type (WRITE or ALL) per purpose. The
different pause purposes are *CLIENT PAUSE command*, *failover* and
*shutdown*. If clients are unpaused for one purpose, it doesn't affect client
pause for other purposes. For example, the CLIENT UNPAUSE command doesn't
affect client pause initiated by the failover or shutdown procedures. A completed
failover or a failed shutdown doesn't unpause clients paused by the CLIENT
PAUSE command.
Notes:
* DEBUG RESTART doesn't wait for replicas.
* We already have a warning logged when a replica disconnects. This means that
if any replica connection is lost during the shutdown, it is either logged as
disconnected or as lagging at the time of exit.
Co-authored-by: Oran Agra <oran@redislabs.com>
This is needed in order to ease the deployment of functions for ephemeral cases, where user
needs to spin up a server with functions pre-loaded.
#### Details:
* Added `--functions-rdb` option to _redis-cli_.
* Functions only rdb via `REPLCONF rdb-filter-only functions`. This is a placeholder for a space
separated inclusion filter for the RDB. In the future can be `REPLCONF rdb-filter-only
"functions db:3 key-patten:user*"` and a complementing `rdb-filter-exclude` `REPLCONF`
can also be added.
* Handle "slave requirements" specification to RDB saving code so we can use the same RDB
when different slaves express the same requirements (like functions-only) and not share the
RDB when their requirements differ. This is currently just a flags `int`, but can be extended to
a more complex structure with various filter fields.
* make sure to support filters only in diskless replication mode (not to override the persistence file),
we do that by forcing diskless (even if disabled by config)
other changes:
* some refactoring in rdb.c (extract portion of a big function to a sub-function)
* rdb_key_save_delay used in AOFRW too
* sendChildInfo takes the number of updated keys (incremental, rather than absolute)
Co-authored-by: Oran Agra <oran@redislabs.com>
This pr is mainly to solve the problem that redis process cannot be exited normally, due to changes in #10003.
When a test uses the `key-load-delay` config to delay loading, but does not reset it at the end of the test, will lead to server wait for the loading to reach the event
loop (once in 2mb) before actually shutting down.
There are two changes in this commit:
1. Add -X option to redis-cli.
Currently `-x` can only be used to provide the last argument,
so you can do `redis-cli dump keyname > key.dump`,
and then do `redis-cli -x restore keyname 0 < key.dump`.
But what if you want to add the replace argument (which comes last?).
oran suggested adding such usage:
`redis-cli -X <tag> restore keyname <tag> replace < key.dump`
i.e. you're able to provide a string in the arguments that's gonna be
substituted with the content from stdin.
Note that the tag name should not conflict with others non-replaced args.
And the -x and -X options are conflicting.
Some usages:
```
[root]# echo mypasswd | src/redis-cli -X passwd_tag mset username myname password passwd_tag OK
[root]# echo username > username.txt
[root]# head -c -1 username.txt | src/redis-cli -X name_tag mget name_tag password
1) "myname"
2) "mypasswd\n"
```
2. Handle the combination of both `-x` and `--cluster` or `-X` and `--cluster`
Extend the broadcast option to receive the last arg or <tag> arg from the stdin.
Now we can use `redis-cli -x --cluster call <host>:<port> cmd`,
or `redis-cli -X <tag> --cluster call <host>:<port> cmd <tag>`.
(support part of #9899)
Preventing COFIG SET maxmemory from propagating is just the tip of the iceberg.
Module that performs a write operation in a notification can cause any
command to be propagated, based on server.dirty
We need to come up with a better solution.
It turns out that libc malloc can return an allocation of a different size on requests of the same size.
this means that matching MEMORY USAGE of one key to another copy of the same data can fail.
Solution:
Keep running the test that calls MEMORY USAGE, but ignore the response.
We do that by introducing a new utility function to get the memory usage, which always returns 1
when the allocator is not jemalloc.
Other changes:
Some formatting for datatype2.tcl
Co-authored-by: Oran Agra <oran@redislabs.com>
Following #9656, this script generates a "commands.json" file from the output
of the new COMMAND. The output of this script is used in redis/redis-doc#1714
and by redis/redis-io#259. This also converts a couple of rogue dashes (in
'key-specs' and 'multiple-token' flags) to underscores (continues #9959).
PR #9890 may have introduced a problem.
There are tests that use MULTI-EXEC to make sure two BGSAVE / BGREWRITEAOF are executed together.
But now it's not valid to run run commands that create a snapshot inside a transaction (gonna be blocked soon)
This PR modifies the test not to rely on MULTI-EXEC.
Co-authored-by: Oran Agra <oran@redislabs.com>
There's a race between testing DBSIZE and the thread starting.
If the thread hadn't started by the time we checked DBISZE, no
keys will have been evicted.
The correct way is to check the evicted_keys stat.
Follow the conclusions to support Functions in redis cluster (#9899)
Added 2 new FUNCTION sub-commands:
1. `FUNCTION DUMP` - dump a binary payload representation of all the functions.
2. `FUNCTION RESTORE <PAYLOAD> [FLUSH|APPEND|REPLACE]` - give the binary payload extracted
using `FUNCTION DUMP`, restore all the functions on the given payload. Restore policy can be given to
control how to handle existing functions (default is APPEND):
* FLUSH: delete all existing functions.
* APPEND: appends the restored functions to the existing functions. On collision, abort.
* REPLACE: appends the restored functions to the existing functions. On collision,
replace the old function with the new function.
Modify `redis-cli --cluster add-node` to use `FUNCTION DUMP` to get existing functions from
one of the nodes in the cluster, and `FUNCTION RESTORE` to load the same set of functions
to the new node. `redis-cli` will execute this step before sending the `CLUSTER MEET` command
to the new node. If `FUNCTION DUMP` returns an error, assume the current Redis version do not
support functions and skip `FUNCTION RESTORE`. If `FUNCTION RESTORE` fails, abort and do not send
the `CLUSTER MEET` command. If the new node already contains functions (before the `FUNCTION RESTORE`
is sent), abort and do not add the node to the cluster. Test was added to verify
`redis-cli --cluster add-node` works as expected.
Use case insensitive string comparison for function names (like we do for commands and configs)
In addition, add verification that the functions only use the following characters: [a-zA-Z0-9_]
The mess:
Some parts use alsoPropagate for late propagation, others using an immediate one (propagate()),
causing edge cases, ugly/hacky code, and the tendency for bugs
The basic idea is that all commands are propagated via alsoPropagate (i.e. added to a list) and the
top-most call() is responsible for going over that list and actually propagating them (and wrapping
them in MULTI/EXEC if there's more than one command). This is done in the new function,
propagatePendingCommands.
Callers to propagatePendingCommands:
1. top-most call() (we want all nested call()s to add to the also_propagate array and just the top-most
one to propagate them) - via `afterCommand`
2. handleClientsBlockedOnKeys: it is out of call() context and it may propagate stuff - via `afterCommand`.
3. handleClientsBlockedOnKeys edge case: if the looked-up key is already expired, we will propagate the
expire but will not unblock any client so `afterCommand` isn't called. in that case, we have to propagate
the deletion explicitly.
4. cron stuff: active-expire and eviction may also propagate stuff
5. modules: the module API allows to propagate stuff from just about anywhere (timers, keyspace notifications,
threads). I could have tried to catch all the out-of-call-context places but it seemed easier to handle it in one
place: when we free the context. in the spirit of what was done in call(), only the top-most freeing of a module
context may cause propagation.
6. modules: when using a thread-safe ctx it's not clear when/if the ctx will be freed. we do know that the module
must lock the GIL before calling RM_Replicate/RM_Call so we propagate the pending commands when
releasing the GIL.
A "known limitation", which were actually a bug, was fixed because of this commit (see propagate.tcl):
When using a mix of RM_Call with `!` and RM_Replicate, the command would propagate out-of-order:
first all the commands from RM_Call, and then the ones from RM_Replicate
Another thing worth mentioning is that if, in the past, a client would issue a MULTI/EXEC with just one
write command the server would blindly propagate the MULTI/EXEC too, even though it's redundant.
not anymore.
This commit renames propagate() to propagateNow() in order to cause conflicts in pending PRs.
propagatePendingCommands is the only caller of propagateNow, which is now a static, internal helper function.
Optimizations:
1. alsoPropagate will not add stuff to also_propagate if there's no AOF and replicas
2. alsoPropagate reallocs also_propagagte exponentially, to save calls to memmove
Bugfixes:
1. CONFIG SET can create evictions, sending notifications which can cause to dirty++ with modules.
we need to prevent it from propagating to AOF/replicas
2. We need to set current_client in RM_Call. buggy scenario:
- CONFIG SET maxmemory, eviction notifications, module hook calls RM_Call
- assertion in lookupKey crashes, because current_client has CONFIG SET, which isn't CMD_WRITE
3. minor: in eviction, call propagateDeletion after notification, like active-expire and all commands
(we always send a notification before propagating the command)
issue started failing after #9878 was merged (made an exiting test more sensitive)
looks like #9982 didn't help, tested this one and it seems to work better.
this commit does two things:
1. reduce the extra delay i added earlier and instead add more keys, the effect no duration
of replication is the same, but the intervals in which the server is responsive to the tcl client is higher.
2. improve the test infra to print context when assert_error fails.
## background
Till now CONFIG SET was blocked during loading.
(In the not so distant past, GET was disallowed too)
We recently (not released yet) added an async-loading mode, see #9323,
and during that time it'll serve CONFIG SET and any other command.
And now we realized (#9770) that some configs, and commands are dangerous
during async-loading.
## changes
* Allow most CONFIG SET during loading (both on async-loading and normal loading)
* Allow CONFIG REWRITE and CONFIG RESETSTAT during loading
* Block a few config during loading (`appendonly`, `repl-diskless-load`, and `dir`)
* Block a few commands during loading (list below)
## the blocked commands:
* SAVE - obviously we don't wanna start a foregreound save during loading 8-)
* BGSAVE - we don't mind to schedule one, but we don't wanna fork now
* BGREWRITEAOF - we don't mind to schedule one, but we don't wanna fork now
* MODULE - we obviously don't wanna unload a module during replication / rdb loading
(MODULE HELP and MODULE LIST are not blocked)
* SYNC / PSYNC - we're in the middle of RDB loading from master, must not allow sync
requests now.
* REPLICAOF / SLAVEOF - we're in the middle of replicating, maybe it makes sense to let
the user abort it, but he couldn't do that so far, i don't wanna take any risk of bugs due to odd state.
* CLUSTER - only allow [HELP, SLOTS, NODES, INFO, MYID, LINKS, KEYSLOT, COUNTKEYSINSLOT,
GETKEYSINSLOT, RESET, REPLICAS, COUNT_FAILURE_REPORTS], for others, preserve the status quo
## other fixes
* processEventsWhileBlocked had an issue when being nested, this could happen with a busy script
during async loading (new), but also in a busy script during AOF loading (old). this lead to a crash in
the scenario described in #6988
If a test fails at `wait_for_blocked_clients_count` after the `PAUSE` command,
It won't send `UNPAUSE` to server, leading to the server hanging until timeout,
which is bad and hard to debug sometimes when developing.
This PR tries to fix this.
Timeout in `CLIENT PAUSE` shortened from 1e5 seconds(extremely long) to 50~100 seconds.
The issue with MAY_REPLICATE is that all automatic mechanisms to handle
write commands will not work. This require have a special treatment for:
* Not allow those commands to be executed on RO replica.
* Allow those commands to be executed on RO replica from primary connection.
* Allow those commands to be executed on the RO replica from AOF.
By setting those commands as WRITE commands we are getting all those properties from Redis.
Test was added to verify that those properties work as expected.
In addition, rearrange when and where functions are flushed. Before this PR functions were
flushed manually on `rdbLoadRio` and cleaned manually on failure. This contradicts the
assumptions that functions are data and need to be created/deleted alongside with the
data. A side effect of this, for example, `debug reload noflush` did not flush the data but
did flush the functions, `debug loadaof` flush the data but not the functions.
This PR move functions deletion into `emptyDb`. `emptyDb` (renamed to `emptyData`) will
now accept an additional flag, `NOFUNCTIONS` which specifically indicate that we do not
want to flush the functions (on all other cases, functions will be flushed). Used the new flag
on FLUSHALL and FLUSHDB only! Tests were added to `debug reload` and `debug loadaof`
to verify that functions behave the same as the data.
Notice that because now functions will be deleted along side with the data we can not allow
`CLUSTER RESET` to be called from within a function (it will cause the function to be released
while running), this PR adds `NO_SCRIPT` flag to `CLUSTER RESET` so it will not be possible
to be called from within a function. The other cluster commands are allowed from within a
function (there are use-cases that uses `GETKEYSINSLOT` to iterate over all the keys on a
given slot). Tests was added to verify `CLUSTER RESET` is denied from within a script.
Another small change on this PR is that `RDBFLAGS_ALLOW_DUP` is also applicable on functions.
When loading functions, if this flag is set, we will replace old functions with new ones on collisions.
# Background
The main goal of this PR is to remove relevant logics on Lua script verbatim replication,
only keeping effects replication logic, which has been set as default since Redis 5.0.
As a result, Lua in Redis 7.0 would be acting the same as Redis 6.0 with default
configuration from users' point of view.
There are lots of reasons to remove verbatim replication.
Antirez has listed some of the benefits in Issue #5292:
>1. No longer need to explain to users side effects into scripts.
They can do whatever they want.
>2. No need for a cache about scripts that we sent or not to the slaves.
>3. No need to sort the output of certain commands inside scripts
(SMEMBERS and others): this both simplifies and gains speed.
>4. No need to store scripts inside the RDB file in order to startup correctly.
>5. No problems about evicting keys during the script execution.
When looking back at Redis 5.0, antirez and core team decided to set the config
`lua-replicate-commands yes` by default instead of removing verbatim replication
directly, in case some bad situations happened. 3 years later now before Redis 7.0,
it's time to remove it formally.
# Changes
- configuration for lua-replicate-commands removed
- created config file stub for backward compatibility
- Replication script cache removed
- this is useless under script effects replication
- relevant statistics also removed
- script persistence in RDB files is also removed
- Propagation of SCRIPT LOAD and SCRIPT FLUSH to replica / AOF removed
- Deterministic execution logic in scripts removed (i.e. don't run write commands
after random ones, and sorting output of commands with random order)
- the flags indicating which commands have non-deterministic results are kept as hints to clients.
- `redis.replicate_commands()` & `redis.set_repl()` changed
- now `redis.replicate_commands()` does nothing and return an 1
- ...and then `redis.set_repl()` can be issued before `redis.replicate_commands()` now
- Relevant TCL cases adjusted
- DEBUG lua-always-replicate-commands removed
# Other changes
- Fix a recent bug comparing CLIENT_ID_AOF to original_client->flags instead of id. (introduced in #9780)
Co-authored-by: Oran Agra <oran@redislabs.com>
Recent PRs have introduced some failures, this commit
try to fix these CI failures. Here are the changes:
1. Enable debug-command in sentinel test.
```
Master reboot in very short time: ERR DEBUG command not allowed. If the
enable-debug-command option is set to "local", you can run it from a
local connection, otherwise you need to set this option in the
configuration file, and then restart the server.
```
2. Enable protected-config in sentinel test.
```
SDOWN is triggered by misconfigured instance replying with errors: ERR
CONFIG SET failed (possibly related to argument 'dir') - can't set
protected config
```
3. Enable debug-command in cluster test.
```
Verify slaves consistency: ERR DEBUG command not allowed. If the
enable-debug-command option is set to "local", you can run it from a
local connection, otherwise you need to set this option in the
configuration file, and then restart the server.
```
4. quicklist fill should be signed int.
The reason for the modification is to eliminate the warning.
Modify `int fill: QL_FILL_BITS` to `signed int fill: QL_FILL_BITS`
The first three were introduced at #9920 (same issue).
And the last one was introduced at #9962.
- add needs:debug flag for some tests
- disable "save" in external tests (speedup?)
- use debug_digest proc instead of debug command directly so it can be skipped
- use OBJECT ENCODING instead of DEBUG OBJECT to get encoding
- add a proc for OBJECT REFCOUNT so it can be skipped
- move a bunch of tests in latency_monitor tests to happen later so that latency monitor has some values in it
- add missing close_replication_stream calls
- make sure to close the temp client if DEBUG LOG fails
Block sensitive configs and commands by default.
* `enable-protected-configs` - block modification of configs with the new `PROTECTED_CONFIG` flag.
Currently we add this flag to `dbfilename`, and `dir` configs,
all of which are non-mutable configs that can set a file redis will write to.
* `enable-debug-command` - block the `DEBUG` command
* `enable-module-command` - block the `MODULE` command
These have a default value set to `no`, so that these features are not
exposed by default to client connections, and can only be set by modifying the config file.
Users can change each of these to either `yes` (allow all access), or `local` (allow access from
local TCP connections and unix domain connections)
Note that this is a **breaking change** (specifically the part about MODULE command being disabled by default).
I.e. we don't consider DEBUG command being blocked as an issue (people shouldn't have been using it),
and the few configs we protected are unlikely to have been set at runtime anyway.
On the other hand, it's likely to assume some users who use modules, load them from the config file anyway.
Note that's the whole point of this PR, for redis to be more secure by default and reduce the attack surface on
innocent users, so secure defaults will necessarily mean a breaking change.
some languages can build a json-like object by parsing a textual json,
but it works poorly when attributes contain hyphens
example in JS:
```
let j = JSON.parse(json)
j['key-name'] <- works
j.key-name <= illegal syntax
```
Introduce memory management on cluster link buffers:
* Introduce a new `cluster-link-sendbuf-limit` config that caps memory usage of cluster bus link send buffers.
* Introduce a new `CLUSTER LINKS` command that displays current TCP links to/from peers.
* Introduce a new `mem_cluster_links` field under `INFO` command output, which displays the overall memory usage by all current cluster links.
* Introduce a new `total_cluster_links_buffer_limit_exceeded` field under `CLUSTER INFO` command output, which displays the accumulated count of cluster links freed due to `cluster-link-sendbuf-limit`.
Added `FUNCTION FLUSH` command. The new sub-command allows delete all the functions.
An optional `[SYNC|ASYNC]` argument can be given to control whether or not to flush the
functions synchronously or asynchronously. if not given the default flush mode is chosen by
`lazyfree-lazy-user-flush` configuration values.
Add the missing `functions.tcl` test to the list of tests that are executed in test_helper.tcl,
and call FUNCTION FLUSH in between servers in external mode
Support doing `CONFIG GET <x> <y> <z>`, each of them can also be
a pattern with wildcards.
This avoids duplicates in the result by looping over the configs and for
each once checking all the patterns, once a match is found for a pattern
we move on to the next config.
Delete the hardcoded command table and replace it with an auto-generated table, based
on a JSON file that describes the commands (each command must have a JSON file).
These JSON files are the SSOT of everything there is to know about Redis commands,
and it is reflected fully in COMMAND INFO.
These JSON files are used to generate commands.c (using a python script), which is then
committed to the repo and compiled.
The purpose is:
* Clients and proxies will be able to get much more info from redis, instead of relying on hard coded logic.
* drop the dependency between Redis-user and the commands.json in redis-doc.
* delete help.h and have redis-cli learn everything it needs to know just by issuing COMMAND (will be
done in a separate PR)
* redis.io should stop using commands.json and learn everything from Redis (ultimately one of the release
artifacts should be a large JSON, containing all the information about all of the commands, which will be
generated from COMMAND's reply)
* the byproduct of this is:
* module commands will be able to provide that info and possibly be more of a first-class citizens
* in theory, one may be able to generate a redis client library for a strictly typed language, by using this info.
### Interface changes
#### COMMAND INFO's reply change (and arg-less COMMAND)
Before this commit the reply at index 7 contained the key-specs list
and reply at index 8 contained the sub-commands list (Both unreleased).
Now, reply at index 7 is a map of:
- summary - short command description
- since - debut version
- group - command group
- complexity - complexity string
- doc-flags - flags used for documentation (e.g. "deprecated")
- deprecated-since - if deprecated, from which version?
- replaced-by - if deprecated, which command replaced it?
- history - a list of (version, what-changed) tuples
- hints - a list of strings, meant to provide hints for clients/proxies. see https://github.com/redis/redis/issues/9876
- arguments - an array of arguments. each element is a map, with the possibility of nesting (sub-arguments)
- key-specs - an array of keys specs (already in unstable, just changed location)
- subcommands - a list of sub-commands (already in unstable, just changed location)
- reply-schema - will be added in the future (see https://github.com/redis/redis/issues/9845)
more details on these can be found in https://github.com/redis/redis-doc/pull/1697
only the first three fields are mandatory
#### API changes (unreleased API obviously)
now they take RedisModuleCommand opaque pointer instead of looking up the command by name
- RM_CreateSubcommand
- RM_AddCommandKeySpec
- RM_SetCommandKeySpecBeginSearchIndex
- RM_SetCommandKeySpecBeginSearchKeyword
- RM_SetCommandKeySpecFindKeysRange
- RM_SetCommandKeySpecFindKeysKeynum
Currently, we did not add module API to provide additional information about their commands because
we couldn't agree on how the API should look like, see https://github.com/redis/redis/issues/9944.
### Somehow related changes
1. Literals should be in uppercase while placeholder in lowercase. Now all the GEO* command
will be documented with M|KM|FT|MI and can take both lowercase and uppercase
### Unrelated changes
1. Bugfix: no_madaory_keys was absent in COMMAND's reply
2. expose CMD_MODULE as "module" via COMMAND
3. have a dedicated uint64 for ACL categories (instead of having them in the same uint64 as command flags)
Co-authored-by: Itamar Haber <itamar@garantiadata.com>
When CONFIG SET fails, print the name of the config that failed.
This is helpful since config set is now variadic.
however, there are cases where several configs have the same apply
function, and we can't be sure which one of them caused the failure.
This caused a crash when adding elements larger than 2GB to a set (same goes for hash keys). See #8455.
Details:
* The fix makes the dict hash functions receive a `size_t` instead of an `int`. In practice the dict hash functions
call siphash which receives a `size_t` and the callers to the hash function pass a `size_t` to it so the fix is trivial.
* The issue was recreated by attempting to add a >2gb value to a set. Appropriate tests were added where I create
a set with large elements and check basic functionality on it (SADD, SCARD, SPOP, etc...).
* When I added the tests I also refactored a bit all the tests code which is run under the `--large-memory` flag.
This removed code duplication for the test framework's `write_big_bulk` and `write_big_bulk` code and also takes
care of not allocating the test frameworks helper huge string used by these tests when not run under `--large-memory`.
* I also added the _violoations.tcl_ unit tests to be part of the entire test suite and leaned up non relevant list related
tests that were in there. This was done in this PR because most of the _violations_ tests are "large memory" tests.
A test failure was reported in Daily CI (FreeBSD).
`XREAD: XADD + DEL should not awake client`
```
*** [err]: XREAD: XADD + DEL should not awake client in tests/unit/type/stream.tcl
Expected [lindex 0 0] eq {s1} (context: type eval line 11 cmd {assert {[lindex $res 0 0] eq {s1}}} proc ::test)
```
It seems that `r` is executed before `rd` enters the blocking
state. And ended up getting a empty reply by timeout.
We use `wait_for_blocked_clients_count` to wait for the
blocking client to be ready and avoid this situation.
Also fixed other test cases that may have the same issue.
When rdb creates a consumer without determining whether it exists in advance,
it may return NULL and crash if it encounters corrupt data with duplicate consumers.
Added `HIDDEN_CONFIG` to hide debug / dev / testing configs from CONFIG GET
when it is used with a wildcard.
These are not documented in redis.conf so now CONFIG GET only works when they
are explicitly specified.
The current configs are:
```
key-load-delay
loading-process-events-interval-bytes
rdb-key-save-delay
use-exit-on-panic
watchdog-period
```
When disabling redis oom-score-adj managment we restore the
base value read before enabling oom-score-adj management.
This fixes an issue introduced in #9748 where updating
`oom-score-adj-values` while `oom-score-adj` was set to `no`
would write the base oom score adj value read on startup to `/proc`.
This is a bug since while `oom-score-adj` is disabled we should
never write to proc and let external processes manage it.
Added appropriate tests.
A test failure was reported in Daily CI.
`Crash report generated on SIGABRT` with FreeBSD.
```
*** [err]: Crash report generated on SIGABRT in tests/integration/logging.tcl
Expected [string match *crashed by signal* ### Starting...(logs) in tests/integration/logging.tcl]
```
It look like `tail -1000` was executed too early, before it
printed out all the crash logs. We can give it a few more
chances by using `wait_for_log_messages`.
Other changes:
1. In `Server is able to generate a stack trace on selected systems`,
use `wait_for_log_messages`to reduce the lines of code. And if it
fails, there are more detailed logs that can be printed.
2. In `Crash report generated on DEBUG SEGFAULT`, we also use
`wait_for_log_messages` to avoid possible timing issues.
# Redis Function
This PR added the Redis Functions capabilities that were suggested on #8693.
The PR also introduce a big refactoring to the current Lua implementation
(i.e `scripting.c`). The main purpose of the refactoring is to have better
code sharing between the Lua implementation that exists today on Redis
(`scripting.c`) and the new Lua engine that is introduced on this PR.
The refactoring includes code movements and file name changes as well as some
logic changes that need to be carefully reviewed. To make the review easier,
the PR was split into multiple commits. Each commit is deeply described later on
but the main concept is that some commits are just moving code around without
making any logical changes, those commits are less likely to cause any issues
or regressions and can be reviewed fast. Other commits, which perform code and
logic changes, need to be reviewed carefully, but those commits were created
after the code movements so it's pretty easy to see what was changed. To sum up,
it is highly recommended to review this PR commit by commit as it will be easier
to see the changes, it is also recommended to read each commit description
(written below) to understand what was changed on the commit and whether or not
it's just a huge code movement or a logic changes.
## Terminology
Currently, the terminology in Redis is not clearly defined. Scripts refer to Lua
scripts and eval also refers only to Lua. Introducing Redis Function requires
redefining those terms to be able to clearly understand what is been discussed
on each context.
* eval - legacy Lua script implementation.
* Function - new scripting implementation (currently implemented in Lua but in
the future, it might be other languages like javascript).
* Engine - the component that is responsible for executing functions.
* Script - Function or legacy Lua (executed with `eval` or `evalsha`)
## Refactoring New Structure
Today, the entire scripting logic is located on `scripting.c`. This logic can
be split into 3 main groups:
1. Script management - responsible for storing the scripts that were sent to
Redis and retrieving them when they need to be run (base on the script sha
on the current implementation).
2. Script invocation - invoke the script given on `eval` or `evalsha` command
(this part includes finding the relevant script, preparing the arguments, ..)
3. Interact back with Redis (command invocation)
Those 3 groups are tightly coupled on `scripting.c`. Redis Functions also need
to use those groups logics, for example, to interact back with Redis or to
execute Lua code. The refactoring attempts to split those 3 groups and define
APIs so that we can reuse the code both on legacy Lua scripts and Redis Functions.
In order to do so we define the following units:
1. script.c: responsible for interaction with Redis from within a script.
2. script_lua.c: responsible to execute Lua code, uses `script.c` to interact
with Redis from within the Lua code.
3. function_lua.c: contains the Lua engine implementation, uses `script_lua.c`
to execute the Lua code.
4. functions.c: Contains Redis Functions implementation (`FUNCTION` command,),
uses `functions_lua.c` if the function it wants to invoke needs the Lua
engine.
4. eval.c: the original `scripting.c` contains the Lua legacy implementation and
was refactored to use `script_lua.c` to invoke the Lua code.
## Commits breakdown
Notice: Some small commits are omitted from this list as they are small and
insignificant (for example build fixes)
### First commit - code movements
This commit rename `scripting.c` -> `eval.c` and introduce the new `script_lua.c`
unit. The commit moves relevant code from `eval.c` (`scripting.c`) to
`script_lua.c`, the purpose of moving the code is so that later we will be able
to re-use the code on the Lua engine (`function_lua.c`). The commit only moves
the code without modifying even a single line, so there is a very low risk of
breaking anything and it also makes it much easier to see the changes on the
following commits.
Because the commit does not change the code (only moves it), it does not compile.
But we do not care about it as the only purpose here is to make the review
processes simpler.
### Second commit - move legacy Lua variables into `eval.c`
Today, all Lua-related variables are located on the server struct. The commit
attempt to identify those variable and take them out from the server struct,
leaving only script related variables (variables that later need to be used
also by engines)
The following variable where renamed and left on the server struct:
* lua_caller -> script_caller
* lua_time_limit -> script_time_limit
* lua_timedout -> script_timedout
* lua_oom -> script_oom
* lua_disable_deny_script -> script_disable_deny_script
* in_eval -> in_script
The following variables where moved to lctx under eval.c
* lua
* lua_client
* lua_cur_script
* lua_scripts
* lua_scripts_mem
* lua_replicate_commands
* lua_write_dirty
* lua_random_dirty
* lua_multi_emitted
* lua_repl
* lua_kill
* lua_time_start
* lua_time_snapshot
This commit is in a low risk of introducing any issues and it is just moving
variables around and not changing any logic.
### Third commit - introducing script unit
This commit introduces the `script.c` unit. Its purpose (as described above) is
to provide an API for scripts to interact with Redis. Interaction includes
mostly executing commands, but also other functionalities. The interaction is
done using a `ScriptRunCtx` object that needs to be created by the user and
initialized using `scriptPrepareForRun`. A detailed list of functionalities
expose by the unit:
1. Calling commands (including all the validation checks such as
acl, cluster, read only run, ...)
2. Set Resp
3. Set Replication method (AOF/REPLICATION/NONE)
4. Call Redis back on long-running scripts to allow Redis to reply to clients
and perform script kill
The commit introduces the new unit and uses it on eval commands to interact with
Redis.
### Fourth commit - Moved functionality of invoke Lua code to `script_lua.c`
This commit moves the logic of invoking the Lua code into `script_lua.c` so
later it can be used also by Lua engine (`function_lua.c`). The code is located
on `callFunction` function and assumes the Lua function already located on the
top of the Lua stack. This commit also change `eval.c` to use the new
functionality to invoke Lua code.
### Fith commit - Added Redis Functions unit (`functions.c`) and Lua engine
(`function_lua.c`)
Added Redis Functions unit under `functions.c`, included:
1. FUNCTION command:
* FUNCTION CREATE
* FUNCTION CALL
* FUNCTION DELETE
* FUNCTION KILL
* FUNCTION INFO
* FUNCTION STATS
2. Register engines
In addition, this commit introduces the first engine that uses the Redis
Functions capabilities, the Lua engine (`function_lua.c`)
## API Changes
### `lua-time-limit`
configuration was renamed to `script-time-limit` (keep `lua-time-limit` as alias
for backward compatibility).
### Error log changes
When integrating with Redis from within a Lua script, the `Lua` term was removed
from all the error messages and instead we write only `script`. For example:
`Wrong number of args calling Redis command From Lua script` -> `Wrong number
of args calling Redis command From script`
### `info memory` changes:
Before stating all the changes made to memory stats we will try to explain the
reason behind them and what we want to see on those metrics:
* memory metrics should show both totals (for all scripting frameworks), as well
as a breakdown per framework / vm.
* The totals metrics should have "human" metrics while the breakdown shouldn't.
* We did try to maintain backward compatibility in some way, that said we did
make some repurpose to existing metrics where it looks reasonable.
* We separate between memory used by the script framework (part of redis's
used_memory), and memory used by the VM (not part of redis's used_memory)
A full breakdown of `info memory` changes:
* `used_memory_lua` and `used_memory_lua_human` was deprecated,
`used_memory_vm_eval` has the same meaning as `used_memory_lua`
* `used_memory_scripts` was renamed to `used_memory_scripts_eval`
* `used_memory_scripts` and `used_memory_scripts_human` were repurposed and now
return the total memory used by functions and eval (not including vm memory,
only code cache, and structs).
* `used_memory_vm_function` was added and represents the total memory used by
functions vm's
* `used_memory_functions` was added and represents the total memory by functions
(not including vm memory, only code cache, and structs)
* `used_memory_vm_total` and `used_memory_vm_total_human` was added and
represents the total memory used by vm's (functions and eval combined)
### `functions.caches`
`functions.caches` field was added to `memory stats`, representing the memory
used by engines that are not functions (this memory includes data structures
like dictionaries, arrays, ...)
## New API
### FUNCTION CREATE
Usage: FUNCTION CREATE `ENGINE` `NAME` `[REPLACE]` `[DESC <DESCRIPTION>]` `<CODE>`
* `ENGINE` - The name of the engine to use to create the script.
* `NAME` - the name of the function that can be used later to call the function
using `FUNCTION CALL` command.
* `REPLACE` - if given, replace the given function with the existing function
(if exists).
* `DESCRIPTION` - optional argument describing the function and what it does
* `CODE` - function code.
The command will return `OK` if created successfully or error in the following
cases:
* The given engine name does not exist
* The function name is already taken and `REPLACE` was not used.
* The given function failed on the compilation.
### FCALL and FCALL_RO
Usage: FCALL/FCALL_RO `NAME` `NUM_KEYS key1 key2` … ` arg1 arg2`
Call and execute the function specified by `NAME`. The function will receive
all arguments given after `NUM_KEYS`. The return value from the function will
be returned to the user as a result.
* `NAME` - Name of the function to run.
* The rest is as today with EVALSHA command.
The command will return an error in the following cases:
* `NAME` does not exist
* The function itself returned an error.
The `FCALL_RO` is equivalent to `EVAL_RO` and allows only read-only commands to
be invoked from the script.
### FUNCTION DELETE
Usage: FUNCTION DELETE `NAME`
Delete a function identified by `NAME`. Return `OK` on success or error on one
of the following:
* The given function does not exist
### FUNCTION INFO
Usage: FUNCTION INFO `NAME` [WITHCODE]
Return information about a function by function name:
* Function name
* Engine name
* Description
* Raw code (only if WITHCODE argument is given)
### FUNCTION LIST
Usage: FUNCTION LIST
Return general information about all the functions:
* Function name
* Engine name
* Description
### FUNCTION STATS
Usage: FUNCTION STATS
Return information about the current running function:
* Function name
* Command that was used to invoke the function
* Duration in MS that the function is already running
If no function is currently running, this section is just a RESP nil.
Additionally, return a list of all the available engines.
### FUNCTION KILL
Usage: `FUNCTION KILL`
Kill the currently executing function. The command will fail if the function
already initiated a write command.
## Notes
Note: Function creation/deletion is replicated to AOF but AOFRW is not
implemented sense its going to be removed: #9794
Redis function unit is located inside functions.c
and contains Redis Function implementation:
1. FUNCTION commands:
* FUNCTION CREATE
* FCALL
* FCALL_RO
* FUNCTION DELETE
* FUNCTION KILL
* FUNCTION INFO
2. Register engine
In addition, this commit introduce the first engine
that uses the Redis Function capabilities, the
Lua engine.
After the introduction of `Multiparam config set` in #9748,
there are two tests cases failed.
```
[exception]: Executing test client: ERR Config set failed - Failed to set current oom_score_adj. Check server logs..
ERR Config set failed - Failed to set current oom_score_adj. Check server logs.
```
`CONFIG sanity` test failed on the `config set oom-score-adj-values`
which is a "special" config that does not catch no-op changes.
And then it will update `oom-score-adj` which not supported in
MacOs. We solve it by adding `oom-score*` to the `skip_configs` list.
```
*** [err]: CONFIG SET rollback on apply error in tests/unit/introspection.tcl
Expected an error but nothing was caught
```
`CONFIG SET rollback on apply error` test failed on the
`config set port $used_port`. In theory, it should throw the
error `Unable to listen on this port*`. But it failed on MacOs.
We solve it by adding `-myaddr 127.0.0.1` to the socket call.
Script unit is a new unit located on script.c.
Its purpose is to provides an API for functions (and eval)
to interact with Redis. Interaction includes mostly
executing commands, but also functionalities like calling
Redis back on long scripts or check if the script was killed.
The interaction is done using a scriptRunCtx object that
need to be created by the user and initialized using scriptPrepareForRun.
Detailed list of functionalities expose by the unit:
1. Calling commands (including all the validation checks such as
acl, cluster, read only run, ...)
2. Set Resp
3. Set Replication method (AOF/REPLICATION/NONE)
4. Call Redis back to on long running scripts to allow Redis reply
to clients and perform script kill
The commit introduce the new unit and uses it on eval commands to
interact with Redis.
We can now do: `config set maxmemory 10m repl-backlog-size 5m`
## Basic algorithm to support "transaction like" config sets:
1. Backup all relevant current values (via get).
2. Run "verify" and "set" on everything, if we fail run "restore".
3. Run "apply" on everything (optional optimization: skip functions already run). If we fail run "restore".
4. Return success.
### restore
1. Run set on everything in backup. If we fail log it and continue (this puts us in an undefined
state but we decided it's better than the alternative of panicking). This indicates either a bug
or some unsupported external state.
2. Run apply on everything in backup (optimization: skip functions already run). If we fail log
it (see comment above).
3. Return error.
## Implementation/design changes:
* Apply function are idempotent (have no effect if they are run more than once for the same config).
* No indication in set functions if we're reading the config or running from the `CONFIG SET` command
(removed `update` argument).
* Set function should set some config variable and assume an (optional) apply function will use that
later to apply. If we know this setting can be safely applied immediately and can always be reverted
and doesn't depend on any other configuration we can apply immediately from within the set function
(and not store the setting anywhere). This is the case of this `dir` config, for example, which has no
apply function. No apply function is need also in the case that setting the variable in the `server` struct
is all that needs to be done to make the configuration take effect. Note that the original concept of `update_fn`,
which received the old and new values was removed and replaced by the optional apply function.
* Apply functions use settings written to the `server` struct and don't receive any inputs.
* I take care that for the generic (non-special) configs if there's no change I avoid calling the setter (possible
optimization: avoid calling the apply function as well).
* Passing the same config parameter more than once to `config set` will fail. You can't do `config set my-setting
value1 my-setting value2`.
Note that getting `save` in the context of the conf file parsing to work here as before was a pain.
The conf file supports an aggregate `save` definition, where each `save` line is added to the server's
save params. This is unlike any other line in the config file where each line overwrites any previous
configuration. Since we now support passing multiple save params in a single line (see top comments
about `save` in https://github.com/redis/redis/pull/9644) we should deprecate the aggregate nature of
this config line and perhaps reduce this ugly code in the future.
Adds the ability to autogenerate the sequence part of the millisecond-only explicit ID specified for `XADD`. This is useful in case added entries have an externally-provided timestamp without sub-millisecond resolution.
Add master-reboot-down-after-period as a configurable parameter, to make it possible to trigger a failover from a master that is responding with `-LOADING` for a long time after being restarted.
The issue can only happened with a bad Lua script that claims to return
a big number while actually return data which is not a big number (contains
chars that are not digits). Such thing will not cause an issue unless the big
number value contains `\r\n` and then it messes the resp3 structure. The fix
changes all the appearances of '\r\n' with spaces.
Such an issue can also happened on simple string or error replies but those
already handle it the same way this PR does (replace `\r\n` with spaces).
Other replies type are not vulnerable to this issue because they are not
counting on free text that is terminated with `\r\n` (either it contains the
bulk length like string reply or they are typed reply that can not inject free
text like boolean or number).
The issue only exists on unstable branch, big number reply on Lua script
was not yet added to any official release.
* Fix CLIENT KILL kill all clients with id 0 or with skipme
CLIENT KILL with ID argument should only kill the client with the provided ID. In old code,
CLIENT KILL with id 0 will kill all the connected clients.
Co-authored-by: Ofir Luzon <ofirluzon@gmail.com>
This test relies on that `XREAD BLOCK 20000 STREAMS s1{t} s2{t} s3{t} $ $ $`
is executed by redis before `XADD s2{t} * new abcd1234`. A ` wait_for_blocked_client`
is needed between the two to ensure the order, otherwise `XADD s2{t} * new abcd1234`
might be executed first due to network delay causing a test failure.
Co-authored-by: xiaolei <xiaolei@91jkys.com>
This pr is following #9779 .
## Describe of feature
Now when we turn on the `list-compress-depth` configuration, the list will compress
the ziplist between `[list-compress-depth, -list-compress-depth]`.
When we need to use the compressed data, we will first decompress it, then use it,
and finally compress it again.
It's controlled by `quicklistNode->recompress`, which is designed to avoid the need to
re-traverse the entire quicklist for compression after each decompression, we only need
to recompress the quicklsitNode being used.
In order to ensure the correctness of recompressing, we should normally let
quicklistDecompressNodeForUse and quicklistCompress appear in pairs, otherwise,
it may lead to the head and tail being compressed or the middle ziplist not being
compressed correctly, which is exactly the problem this pr needs to solve.
## Solution
1. Reset `quicklistIter` after insert and replace.
The quicklist node will be compressed in `quicklistInsertAfter`, `quicklistInsertBefore`,
`quicklistReplaceAtIndex`, so we can safely reset the quicklistIter to avoid it being used again
2. `quicklistIndex` will return an iterator that can be used to recompress the current node after use.
## Test
1. In the `Stress Tester for #3343-Similar Errors` test, when the server crashes or when
`valgrind` or `asan` error is detected, print violating commands.
2. Add a crash test due to wrongly recompressing after `lrem`.
3. Remove `insert before with 0 elements` and `insert after with 0 elements`,
Now we forbid any operation on an NULL quicklistIter.
In order to test the situation where multiple clients are
blocked, we set up multiple clients to execute some blocking
commands. These tests depend on the order of command processing.
Those tests are based on the wrong assumption that the command
send first will be executed by the server first, which is obviously
wrong in some network delyas.
This commit ensures orderly execution of commands by waiting
and judging the number of blocked clients each time.
Fix#9850
This commit 0f8b634cd (CVE-2021-32626 released in 6.2.6, 6.0.16, 5.0.14)
fixes an invalid memory write issue by using `lua_checkstack` API to make
sure the Lua stack is not overflow. This fix was added on 3 places:
1. `luaReplyToRedisReply`
2. `ldbRedis`
3. `redisProtocolToLuaType`
On the first 2 functions, `lua_checkstack` is handled gracefully while the
last is handled with an assert and a statement that this situation can
not happened (only with misbehave module):
> the Redis reply might be deep enough to explode the LUA stack (notice
that currently there is no such command in Redis that returns such a nested
reply, but modules might do it)
The issue that was discovered is that user arguments is also considered part
of the stack, and so the following script (for example) make the assertion reachable:
```
local a = {}
for i=1,7999 do
a[i] = 1
end
return redis.call("lpush", "l", unpack(a))
```
This is a regression because such a script would have worked before and now
its crashing Redis. The solution is to clear the function arguments from the Lua
stack which makes the original assumption true and the assertion unreachable.
Writable replicas now no longer use the values of expired keys. Expired keys are
deleted when lookupKeyWrite() is used, even on a writable replica. Previously,
writable replicas could use the value of an expired key in write commands such
as INCR, SUNIONSTORE, etc..
This commit also sorts out the mess around the functions lookupKeyRead() and
lookupKeyWrite() so they now indicate what we intend to do with the key and
are not affected by the command calling them.
Multi-key commands like SUNIONSTORE, ZUNIONSTORE, COPY and SORT with the
store option now use lookupKeyRead() for the keys they're reading from (which will
not allow reading from logically expired keys).
This commit also fixes a bug where PFCOUNT could return a value of an
expired key.
Test modules commands have their readonly and write flags updated to correctly
reflect their lookups for reading or writing. Modules are not required to
correctly reflect this in their command flags, but this change is made for
consistency since the tests serve as usage examples.
Fixes#6842. Fixes#7475.
Remove lcsGetKeys to clean up the remaining STRALGO after #9733.
i.e. it still used a getkeys_proc which was still looking for the KEYS or STRINGS arguments
Part three of implementing #8702, following #8887 and #9366 .
## Description of the feature
1. Replace the ziplist container of quicklist with listpack.
2. Convert existing quicklist ziplists on RDB loading time. an O(n) operation.
## Interface changes
1. New `list-max-listpack-size` config is an alias for `list-max-ziplist-size`.
2. Replace `debug ziplist` command with `debug listpack`.
## Internal changes
1. Add `lpMerge` to merge two listpacks . (same as `ziplistMerge`)
2. Add `lpRepr` to print info of listpack which is used in debugCommand and `quicklistRepr`. (same as `ziplistRepr`)
3. Replace `QUICKLIST_NODE_CONTAINER_ZIPLIST` with `QUICKLIST_NODE_CONTAINER_PACKED`(following #9357 ).
It represent that a quicklistNode is a packed node, as opposed to a plain node.
4. Remove `createZiplistObject` method, which is never used.
5. Calculate listpack entry size using overhead overestimation in `quicklistAllowInsert`.
We prefer an overestimation, which would at worse lead to a few bytes below the lowest limit of 4k.
## Improvements
1. Calling `lpShrinkToFit` after converting Ziplist to listpack, which was missed at #9366.
2. Optimize `quicklistAppendPlainNode` to avoid memcpy data.
## Bugfix
1. Fix crash in `quicklistRepr` when ziplist is compressed, introduced from #9366.
## Test
1. Add unittest for `lpMerge`.
2. Modify the old quicklist ziplist corrupt dump test.
Co-authored-by: Oran Agra <oran@redislabs.com>
In #9323, when `repl-diskless-load` is enabled and set to `swapdb`,
if the master replication ID hasn't changed, we can load data-set
asynchronously, and serving read commands during the full resync.
In `diskless loading short read` test, after a loading successfully,
we will wait for the loading to stop and continue the for loop.
After the introduction of `async_loading`, we also need to check it.
Otherwise the next loop will start too soon, may trigger a timing issue.
In #8287, some overflow checks have been added. But when
`when *= 1000` overflows, it will become a positive number.
And the check not able to catch it. The key will be added with
a short expiration time and will deleted a few seconds later.
In #9601, will check the overflow after `*=` and return an
error first, and avoiding this situation.
In this commit, added some tests to cover those code paths.
Found it in #9825, and close it.
Some people complain that QUIT is missing from help/command table.
Not appearing in COMMAND command, command stats, ACL, etc.
and instead, there's a hack in processCommand with a comment that looks outdated.
Note that it is [documented](https://redis.io/commands/quit)
At the same time, HOST: and POST are there in the command table although these are not real commands.
They would appear in the COMMAND command, and even in commandstats.
Other changes:
1. Initialize the static logged_time static var in securityWarningCommand
2. add `no-auth` flag to RESET so it can always be executed.
Issue found by corrupt-dump-fuzzer test with ASAN.
The problem was that lpSkip and lpGetWithSize could read the next listpack entry without validating that it's in range.
Similarly even the memcmp in lpFind could do that and possibly crash on segfault and now they'll crash on assert first.
The naive fix of using lpAssertValidEntry every time, resulted in 30% degradation in the lpFind benchmark of the unit test.
The final fix with the condition at the bottom has no performance implications.
TCL8.5 can't handle cases where part of the string is escaped and part of it isn't,
if there's a single char that needs escaping, we need to escape the whole string.
The `PEXPIRE/PSETEX/PEXPIREAT can set sub-second expires` test is
a very time sensitive test, it used to occasionally fail on MacOS.
It will perform there internal tests in a loop, as long as one
fails, it will try to excute again in the next loop.
oranagra suggested that we can split it into three individual tests,
so that if one fails, we do not need to retry the others. And maybe
it will increase the chances of success dramatically.
Each is executed 500 times, and the number of retries is collected:
```
PSETEX, total: 500, sum: 745, min: 0, max: 13, avg: 1.49
PEXPIRE, total: 500, sum: 575, min: 0, max: 16, avg: 1.15
PEXPIREAT, total: 500, sum: 0, min: 0, max: 0, avg: 0.0
ALL(old_way), total: 500, sum: 8090, min: 0, max: 138, avg: 16.18
```
And we can see the threshold is very low.
Splitting the test also makes the code better to maintain.
Co-authored-by: Oran Agra <oran@redislabs.com>
Leak found by the corrupt-dump-fuzzer when using GCC ASAN, which seems
to falsely report leaks on pointers kept only on the stack when calling exit.
Instead we now use _exit on panic / assert to skip these leak checks.
Additionally, check for sanitizer warnings in the corrupt-dump-fuzzer between iterations,
so that when something is found we know which test to relate it too (and it prints reproduction command list)
LCS can allocate immense amount of memory (sizes of two inputs multiplied by each other).
In the past this caused some possible security issues due to overflows, which we solved
and also added use of `trymalloc` to return "Insufficient memory" instead of OOM panic zmalloc.
But in case overcommit is enabled, it could be that we won't get the OOM panic, and zmalloc
will succeed, and then we can get OOM killed by the kernel.
The solution here is to prevent LCS from allocating transient memory that's bigger than
`proto-max-bulk-len` config.
This config is not directly related to transient memory, but using a hard coded value ad well as
introducing a specific config seems wrong.
This comes to solve an error in the corrupt-dump-fuzzer test that started in the daily CI see #9799
Background:
Following the upgrade to jemalloc 5.2, there was a test that used to be flaky and
started failing consistently (on 32bit), so we disabled it (see #9645).
This is a test that i introduced in #7289 when i attempted to solve a rare stagnation
problem, and it later turned out i failed to solve it, ans what's more i added a test that
caused it to be not so rare, and as i mentioned, now in jemalloc 5.2 it became consistent on 32bit.
Stagnation can happen when all the slabs of the bin are equally utilized, so the decision
to move an allocation from a relatively empty slab to a relatively full one, will never
happen, and in that test all the slabs are at 50% utilization, so the defragger could just
keep scanning the keyspace and not move anything.
What this PR changes:
* First, finally in jemalloc 5.2 we have the count of non-full slabs, so when we compare
the utilization of the current slab, we can compare it to the average utilization of the non-full
slabs in our bin, instead of the total average of our bin. this takes the full slabs out of the game,
since they're not candidates for migration (neither source nor target).
* Secondly, We add some 12% (100/8) to the decision to defrag an allocation, this is the part
that aims to avoid stagnation, and it's especially important since the above mentioned change
can get us closer to stagnation.
* Thirdly, since jemalloc 5.2 adds sharded bins, we take into account all shards (something
that's missing from the original PR that merged it), this isn't expected to make any difference
since anyway there should be just one shard.
How this was benchmarked.
What i did was run the memefficiency test unit with `--verbose` and compare the defragger hits
and misses the tests reported.
At first, when i took into consideration only the non-full slabs, it got a lot worse (i got into
stagnation, or just got a lot of misses and a lot of hits), but when i added the 10% i got back
to results that were slightly better than the ones of the jemalloc 5.1 branch. i.e. full defragmentation
was achieved with fewer hits (relocations), and fewer misses (keyspace scans).
Recently we started using list-compress-depth in tests (was completely untested till now).
Turns this triggered test failures with the external mode, since the tests left the setting enabled
and then it was used in other tests (specifically the fuzzer named "Stress tester for #3343-alike bugs").
This PR fixes the issue of the `recompress` flag being left set by mistake, which caused the code to
later to compress the head or tail nodes (which should never be compressed)
The solution is to reset the recompress flag when it should have been (when it was decided not to compress).
Additionally we're adding some assertions and improve the tests so in order to catch other similar bugs.
Currently PING returns different status when server is not serving data,
for example when `LOADING` or `BUSY`.
But same was not true for `MASTERDOWN`
This commit makes PING reply with `MASTERDOWN` when
replica-serve-stale-data=no and link is MASTER is down.
Drop the STRALGO command, now LCS is a command of its own and it only works on keys (not input strings).
The motivation is that STRALGO's syntax was really messed-up...
- assumes all (future) string algorithms will take similar arguments
- mixes command that takes keys and one that doesn't in the same command.
- make it nearly impossible to expose the right key spec in COMMAND INFO (issues cluster clients)
- hard for cluster clients to determine the key names (firstkey, lastkey, etc)
- hard for ACL / flags (is it a read command?)
This is a breaking change.
Moves ZPOP ... 0 fast exit path after type check to reply with
WRONGTYPE. In the past it will return an empty array.
Also now count is not allowed to be negative.
see #9680
before:
```
127.0.0.1:6379> set zset str
OK
127.0.0.1:6379> zpopmin zset 0
(empty array)
127.0.0.1:6379> zpopmin zset -1
(empty array)
```
after:
```
127.0.0.1:6379> set zset str
OK
127.0.0.1:6379> zpopmin zset 0
(error) WRONGTYPE Operation against a key holding the wrong kind of value
127.0.0.1:6379> zpopmin zset -1
(error) ERR value is out of range, must be positive
```
Redis supports inserting data over 4GB into string (and recently for lists too, see #9357),
But LZF compression used in RDB files (see `rdbcompression` config), and in quicklist
(see `list-compress-depth` config) does not support compress/decompress data over
UINT32_MAX, which will result in corrupting the rdb after compression.
Internal changes:
1. Modify the `unsigned int` parameter of `lzf_compress/lzf_decompress` to `size_t`.
2. Modify the variable types in `lzf_compress` involving offsets and lengths to `size_t`.
3. Set LZF_USE_OFFSETS to 0.
When LZF_USE_OFFSETS is 1, lzf store offset into `LZF_HSLOT`(32bit).
Even in 64-bit, `LZF_USE_OFFSETS` defaults to 1, because lzf assumes that it only
compresses and decompresses data smaller than UINT32_MAX.
But now we need to make lzf support 64-bit, turning on `LZF_USE_OFFSETS` will make
it impossible to store 64-bit offsets or pointers.
BTW, disable LZF_USE_OFFSETS also brings a few performance improvements.
Tests:
1. Add test for compress/decompress string large than UINT32_MAX.
2. Add unittest for compress/decompress quicklistNode.
Two issues:
1. In many tests we simply forgot to close the connections we created, which doesn't matter for normal tests where the server is killed, but creates a leak on external server tests.
2. When calling `start_server` on external test we create a fresh connection instead of really starting a new server, but never clean it at the end.
I have seen this CI failure twice on MacOS:
*** [err]: PEXPIRE/PSETEX/PEXPIREAT can set sub-second expires in tests/unit/expire.tcl
Expected 'somevalue {} somevalue {} somevalue {}' to equal or match '{} {} {} {} somevalue {}'
I did some loop test in my own daily CI, the results show that is
not particularly stable. Change the threshold from 30 to 50.
- Added sanitizer support. `address`, `undefined` and `thread` sanitizers are available.
- To build Redis with desired sanitizer : `make SANITIZER=undefined`
- There were some sanitizer findings, cleaned up codebase
- Added tests with address and undefined behavior sanitizers to daily CI.
- Added tests with address sanitizer to the per-PR CI (smoke out mem leaks sooner).
Basically, there are three types of issues :
**1- Unaligned load/store** : Most probably, this issue may cause a crash on a platform that
does not support unaligned access. Redis does unaligned access only on supported platforms.
**2- Signed integer overflow.** Although, signed overflow issue can be problematic time to time
and change how compiler generates code, current findings mostly about signed shift or simple
addition overflow. For most platforms Redis can be compiled for, this wouldn't cause any issue
as far as I can tell (checked generated code on godbolt.org).
**3 -Minor leak** (redis-cli), **use-after-free**(just before calling exit());
UB means nothing guaranteed and risky to reason about program behavior but I don't think any
of the fixes here worth backporting. As sanitizers are now part of the CI, preventing new issues
will be the real benefit.
On test failure store the external redis server logs as CI artifacts so we can review them.
Write test name to server log for external server tests.
This is attempted and silently failed in case external server doesn't support it.
Note that in non-external server mode we use a more robust method of writing to the log which doesn't depend on the
server actually running/working. This isn't possible for externl servers and required for some complex tests which are
skipped in external mode anyway.
Cleanup: remove dup code.
First, avoid using --accurate on the freebsd CI, we only care about
systematic issues there due to being different platform, but not
accuracy
Secondly, when looking at the test which timed out it seems silly and
outdated:
- it used KEYS to attempt to trigger lazy expiry, but KEYS doesn't do
that anymore.
- it used some hard coded sleeps rather than waiting for things to
happen and exiting ASAP
We saw some tests sporadically time out on valgrind (namely the ones
from #9323).
Increasing valgrind timeout from 20 mins to 40 mins in CI.
And fixing an outdated help message.
In both tests, "diskless loading short read" and "diskless loading short read with module",
the timeout of waiting for the replica to respond to a short read and log it, is too short.
Also, add --dump-logs in runtest-moduleapi for valgrind runs.
Optimized port detection for tcl, use 'socket -server' instead of 'socket' to rule out port on TIME_WAIT
Co-authored-by: chendianqiang <chendianqiang@meituan.com>
Co-authored-by: Oran Agra <oran@redislabs.com>
For diskless replication in swapdb mode, considering we already spend replica memory
having a backup of current db to restore in case of failure, we can have the following benefits
by instead swapping database only in case we succeeded in transferring db from master:
- Avoid `LOADING` response during failed and successful synchronization for cases where the
replica is already up and running with data.
- Faster total time of diskless replication, because now we're moving from Transfer + Flush + Load
time to Transfer + Load only. Flushing the tempDb is done asynchronously after swapping.
- This could be implemented also for disk replication with similar benefits if consumers are willing
to spend the extra memory usage.
General notes:
- The concept of `backupDb` becomes `tempDb` for clarity.
- Async loading mode will only kick in if the replica is syncing from a master that has the same
repl-id the one it had before. i.e. the data it's getting belongs to a different time of the same timeline.
- New property in INFO: `async_loading` to differentiate from the blocking loading
- Slot to Key mapping is now a field of `redisDb` as it's more natural to access it from both server.db
and the tempDb that is passed around.
- Because this is affecting replicas only, we assume that if they are not readonly and write commands
during replication, they are lost after SYNC same way as before, but we're still denying CONFIG SET
here anyways to avoid complications.
Considerations for review:
- We have many cases where server.loading flag is used and even though I tried my best, there may
be cases where async_loading should be checked as well and cases where it shouldn't (would require
very good understanding of whole code)
- Several places that had different behavior depending on the loading flag where actually meant to just
handle commands coming from the AOF client differently than ones coming from real clients, changed
to check CLIENT_ID_AOF instead.
**Additional for Release Notes**
- Bugfix - server.dirty was not incremented for any kind of diskless replication, as effect it wouldn't
contribute on triggering next database SAVE
- New flag for RM_GetContextFlags module API: REDISMODULE_CTX_FLAGS_ASYNC_LOADING
- Deprecated RedisModuleEvent_ReplBackup. Starting from Redis 7.0, we don't fire this event.
Instead, we have the new RedisModuleEvent_ReplAsyncLoad holding 3 sub-events: STARTED,
ABORTED and COMPLETED.
- New module flag REDISMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD for RedisModule_SetModuleOptions
to allow modules to declare they support the diskless replication with async loading (when absent, we fall
back to disk-based loading).
Co-authored-by: Eduardo Semprebon <edus@saxobank.com>
Co-authored-by: Oran Agra <oran@redislabs.com>
Introduced in #8179, this fixes the command's replies in the 0 count edge case.
[BREAKING] changes the reply type when count is 0 to an empty array (instead of nil)
Moves LPOP ... 0 fast exit path after type check to reply with WRONGTYPE
When repl-diskless-load is enabled, the connection is set to the blocking state.
The connection may be interrupted by a signal during a system call.
This would have resulted in a disconnection and possibly a reconnection loop.
Co-authored-by: Oran Agra <oran@redislabs.com>
there was a chance that by the time the assertion is executed,
the replica already manages to reconnect.
now we make sure the replica is unable to re-connect to the master.
additionally, we wait for some gossip from the disconnected replica,
to see that it doesn't mess things up.
unrelated: fix a typo when trying to exhaust the backlog, one that
didn't have any harmful implications
Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
Redis lists are stored in quicklist, which is currently a linked list of ziplists.
Ziplists are limited to storing elements no larger than 4GB, so when bigger
items are added they're getting truncated.
This PR changes quicklists so that they're capable of storing large items
in quicklist nodes that are plain string buffers rather than ziplist.
As part of the PR there were few other changes in redis:
1. new DEBUG sub-commands:
- QUICKLIST-PACKED-THRESHOLD - set the threshold of for the node type to
be plan or ziplist. default (1GB)
- QUICKLIST <key> - Shows low level info about the quicklist encoding of <key>
2. rdb format change:
- A new type was added - RDB_TYPE_LIST_QUICKLIST_2 .
- container type (packed / plain) was added to the beginning of the rdb object
(before the actual node list).
3. testing:
- Tests that requires over 100MB will be by default skipped. a new flag was
added to 'runtest' to run the large memory tests (not used by default)
Co-authored-by: sundb <sundbcn@gmail.com>
Co-authored-by: Oran Agra <oran@redislabs.com>
Add new no-mandatory-keys flag to support COMMAND GETKEYS of commands
which have no mandatory keys.
In the past we would have got this error:
```
127.0.0.1:6379> command getkeys eval "return 1" 0
(error) ERR Invalid arguments specified for command
```
The issue was that setting maxmemory to used_memory and expecting
eviction is insufficient, since we need to take
mem_not_counted_for_evict into consideration.
This test got broken by #9166
The External tests started failing recently for unclear reason:
```
*** [err]: Tracking invalidation message of eviction keys should be before response in tests/unit/tracking.tcl
Expected '0' to be equal to 'invalidate volatile-key' (context: type eval line 21 cmd {assert_equal $res {invalidate volatile-key}} proc ::test)
```
I suspect the issue is that the used_memory sample is taken while a lazy free is still being processed.
So it looks like sampling set loglines [count_log_lines -2] was
executed too late, and the replication managed to complete before that.
```
*** [err]: diskless no replicas drop during rdb pipe in tests/integration/replication.tcl
log message of '"*Diskless rdb transfer, done reading from pipe, 2 replicas still up*"' not found in ./tests/tmp/server.6124.69/stdout after line: 52 till line: 52
```
Changes:
1. when we search the master log file, we start to search from before we sent the REPLICAOF
command, to prevent a race in which the replication completed before we sampled the log line count.
2. we don't need to sample the replica loglines sine it's a fresh resplica that's just been started, so the message
we're looking for is the first occurrence in the log, we can start search from 0.
Co-authored-by: Oran Agra <oran@redislabs.com>
Test failed on freebsd:
```
*** [err]: Make the old master a replica of the new one and check conditions in tests/integration/psync2-pingoff.tcl
Expected '162' to be equal to '176' (context: type eval line 18 cmd {assert_equal [status $R(0) master_repl_offset] [status $R(1) master_repl_offset]} proc ::test)
```
There are two possible race conditions in the test.
1. The code waits for sync_full to increment, and assumes that means the
master did the fork. But in fact there are cases the master will increment
that sync_full counter (after replica asks for sync), but will see that
there's already a fork running and will delay the fork creation.
In this case the INCR will be executed before the fork happens, so it'll
not be in the command stream. Solve that by waiting for `master_link_status: up`
on the replica before the INCR.
2. The repl-ping-replica-period is still high (1 second), so there's a chance the
master will send an additional PING between the two calls to INFO (the line that
fails is the one that samples INFO from both servers). So there's a chance one of
them will have an incremented offset due to PING and the other won't have it yet.
In theory we can wait for the repl_offset to match, but then we risk facing a
situation where that race will hide an offset mis-match. so instead, i think we
should just change repl-ping-replica-period to prevent further pings from being pushed.
Co-authored-by: Oran Agra <oran@redislabs.com>
The module test in reply.tcl was introduced by #8521 but didn't run until recently (see #9639)
and then it started failing with valgrind.
This is because valgrind uses 64 bit long double (unlike most other platforms that have at least 80 bits)
But besides valgrind, the tests where also incompatible with ARM32, which also uses 64 bit long doubles.
We now use appropriate value to avoid issues with either valgrind or ARM32
In all the double tests, i use 3.141, which is safe since since addReplyDouble uses
`%.17Lg` which is able to represent this value without adding any digits due to precision loss.
In the long double, since we use `%.17Lf` in ld2string, it preserves 17 significant
digits, rather than 17 digit after the decimal point (like in `%.17Lg`).
So to make these similar, i use value lower than 1 (no digits left of
the period)
Lastly, we have the same issue with TCL (no long doubles) so we read
raw protocol in that test.
Note that the only error before this fix (in both valgrind and ARM32 is this:
```
*** [err]: RM_ReplyWithLongDouble: a float reply in tests/unit/moduleapi/reply.tcl
Expected '3.141' to be equal to '3.14100000000000001' (context: type eval line 2 cmd {assert_equal 3.141 [r rw.longdouble 3.141]} proc ::test)
```
so the changes to debug.c and scripting.tcl aren't really needed, but i consider them a cleanup
(i.e. scripting.c validated a different constant than the one that's sent to it from debug.c).
Another unrelated change is to add the RESP version to the repeated tests in reply.tcl
Fix failures introduced by #9695 which was an attempt to solve failures introduced by #9679.
And alternative to #9703 (i didn't like the extra argument to kill_instance).
Reverting #9695.
Instead of stopping AOF on all terminations, stop it only on the two which need it.
Do it as part of the test rather than the infra (it was add that kill_instance used `R`
to communicate to the instance)
Note that the original purpose of these tests was to trigger a crash, but that upsets
valgrind so in redis 6.2 i changed it to use SIGTERM, so i now rename the tests
(remove "kill" and "crash").
Also add some colors to failures, and the word "FAILED" so that it's searchable.
And solve a semi-related race condition in 14-consistency-check.tcl
This solves several problems in a more elegant way:
* No need to explicitly use `-lc` on x86_64 when building with `-m32`.
* Avoids issues with undefined floating point emulation funcs on ARM.
The previous code did not check whether COUNT is set.
So we can use `lmpop 2 key1 key2 left count 1 count 2`.
This situation can occur in LMPOP/BLMPOP/ZMPOP/BZMPOP commands.
LMPOP/BLMPOP introduced in #9373, ZMPOP/BZMPOP introduced in #9484.
When stopping an instance in the cluster tests, disable appendonly first, so that SIGTERM won't be ignored.
Recently in #9679 i change the test infra to use SIGSEGV to kill servers that refuse
the SIGTERM rather than do SIGKILL directly.
This surfaced an issue that i've added in #7725 which changed SIGKILL to SIGTERM (to resolve valgrind issues).
So the current situation in the past months was that sometimes servers refused the
SIGTERM and waited 10 seconds for the SIGKILL, and this commit resolves that (faster termination).
I recently started seeing a lot of empty valgrind reports in the daily CI.
i.e. prints showing valgrind header but no leak report, which causes the tests to fail
https://github.com/redis/redis/runs/3991335416?check_suite_focus=true
This commit change 2 things:
* first, considering valgrind is just slow, we used to give processes 60 seconds timeout on shutdown
instead of 10 seconds we give normally. this commit changes that to 120.
* secondly, when we reach the timeout, we first try to use SIGSEGV so that maybe we'll get a stack
trace indicating where redis is hang, and we only resort to SIGKILL if double that time passed.
note that if there are indeed hang processes, we will normally not see that in the non-valgrind runs,
since the tests didn't use to detect any failure in that case, and now they will since `crashlog_from_file`
is run after `kill_server`.
Add timestamp annotation in AOF, one part of #9325.
Enabled with the new `aof-timestamp-enabled` config option.
Timestamp annotation format is "#TS:${timestamp}\r\n"."
TS" is short of timestamp and this method could save extra bytes in AOF.
We can use timestamp annotation for some special functions.
- know the executing time of commands
- restore data to a specific point-in-time (by using redis-check-rdb to truncate the file)
Let modules use additional type of RESP3 response (unused by redis so far)
Also fix tests that where introduced in #8521 but didn't actually run.
Co-authored-by: Oran Agra <oran@redislabs.com>
## Background
For redis master, one replica uses one copy of replication buffer, that is a big waste of memory,
more replicas more waste, and allocate/free memory for every reply list also cost much.
If we set client-output-buffer-limit small and write traffic is heavy, master may disconnect with
replicas and can't finish synchronization with replica. If we set client-output-buffer-limit big,
master may be OOM when there are many replicas that separately keep much memory.
Because replication buffers of different replica client are the same, one simple idea is that
all replicas only use one replication buffer, that will effectively save memory.
Since replication backlog content is the same as replicas' output buffer, now we
can discard replication backlog memory and use global shared replication buffer
to implement replication backlog mechanism.
## Implementation
I create one global "replication buffer" which contains content of replication stream.
The structure of "replication buffer" is similar to the reply list that exists in every client.
But the node of list is `replBufBlock`, which has `id, repl_offset, refcount` fields.
```c
/* Replication buffer blocks is the list of replBufBlock.
*
* +--------------+ +--------------+ +--------------+
* | refcount = 1 | ... | refcount = 0 | ... | refcount = 2 |
* +--------------+ +--------------+ +--------------+
* | / \
* | / \
* | / \
* Repl Backlog Replia_A Replia_B
*
* Each replica or replication backlog increments only the refcount of the
* 'ref_repl_buf_node' which it points to. So when replica walks to the next
* node, it should first increase the next node's refcount, and when we trim
* the replication buffer nodes, we remove node always from the head node which
* refcount is 0. If the refcount of the head node is not 0, we must stop
* trimming and never iterate the next node. */
/* Similar with 'clientReplyBlock', it is used for shared buffers between
* all replica clients and replication backlog. */
typedef struct replBufBlock {
int refcount; /* Number of replicas or repl backlog using. */
long long id; /* The unique incremental number. */
long long repl_offset; /* Start replication offset of the block. */
size_t size, used;
char buf[];
} replBufBlock;
```
So now when we feed replication stream into replication backlog and all replicas, we only need
to feed stream into replication buffer `feedReplicationBuffer`. In this function, we set some fields of
replication backlog and replicas to references of the global replication buffer blocks. And we also
need to check replicas' output buffer limit to free if exceeding `client-output-buffer-limit`, and trim
replication backlog if exceeding `repl-backlog-size`.
When sending reply to replicas, we also need to iterate replication buffer blocks and send its
content, when totally sending one block for replica, we decrease current node count and
increase the next current node count, and then free the block which reference is 0 from the
head of replication buffer blocks.
Since now we use linked list to manage replication backlog, it may cost much time for iterating
all linked list nodes to find corresponding replication buffer node. So we create a rax tree to
store some nodes for index, but to avoid rax tree occupying too much memory, i record
one per 64 nodes for index.
Currently, to make partial resynchronization as possible as much, we always let replication
backlog as the last reference of replication buffer blocks, backlog size may exceeds our setting
if slow replicas that reference vast replication buffer blocks, and this method doesn't increase
memory usage since they share replication buffer. To avoid freezing server for freeing unreferenced
replication buffer blocks when we need to trim backlog for exceeding backlog size setting,
we trim backlog incrementally (free 64 blocks per call now), and make it faster in
`beforeSleep` (free 640 blocks).
### Other changes
- `mem_total_replication_buffers`: we add this field in INFO command, it means the total
memory of replication buffers used.
- `mem_clients_slaves`: now even replica is slow to replicate, and its output buffer memory
is not 0, but it still may be 0, since replication backlog and replicas share one global replication
buffer, only if replication buffer memory is more than the repl backlog setting size, we consider
the excess as replicas' memory. Otherwise, we think replication buffer memory is the consumption
of repl backlog.
- Key eviction
Since all replicas and replication backlog share global replication buffer, we think only the
part of exceeding backlog size the extra separate consumption of replicas.
Because we trim backlog incrementally in the background, backlog size may exceeds our
setting if slow replicas that reference vast replication buffer blocks disconnect.
To avoid massive eviction loop, we don't count the delayed freed replication backlog into
used memory even if there are no replicas, i.e. we also regard this memory as replicas's memory.
- `client-output-buffer-limit` check for replica clients
It doesn't make sense to set the replica clients output buffer limit lower than the repl-backlog-size
config (partial sync will succeed and then replica will get disconnected). Such a configuration is
ignored (the size of repl-backlog-size will be used). This doesn't have memory consumption
implications since the replica client will share the backlog buffers memory.
- Drop replication backlog after loading data if needed
We always create replication backlog if server is a master, we need it because we put DELs in
it when loading expired keys in RDB, but if RDB doesn't have replication info or there is no rdb,
it is not possible to support partial resynchronization, to avoid extra memory of replication backlog,
we drop it.
- Multi IO threads
Since all replicas and replication backlog use global replication buffer, if I/O threads are enabled,
to guarantee data accessing thread safe, we must let main thread handle sending the output buffer
to all replicas. But before, other IO threads could handle sending output buffer of all replicas.
## Other optimizations
This solution resolve some other problem:
- When replicas disconnect with master since of out of output buffer limit, releasing the output
buffer of replicas may freeze server if we set big `client-output-buffer-limit` for replicas, but now,
it doesn't cause freezing.
- This implementation may mitigate reply list copy cost time(also freezes server) when one replication
has huge reply buffer and another replica can copy buffer for full synchronization. now, we just copy
reference info, it is very light.
- If we set replication backlog size big, it also may cost much time to copy replication backlog into
replica's output buffer. But this commit eliminates this problem.
- Resizing replication backlog size doesn't empty current replication backlog content.
Before this commit, module blocked clients did not carry through the original RESP version, resulting with RESP3 clients receiving unexpected RESP2 replies.
Following #9483 the daily CI exposed a few problems.
* The cluster creation code (uses redis-cli) is complicated to test with TLS enabled.
for now i'm just skipping them since the tests we run there don't really need that kind of coverage
* cluster port binding failures
note that `find_available_port` already looks for a free cluster port
but the code in `wait_server_started` couldn't detect the failure of binding
(the text it greps for wasn't found in the log)
## Intro
The purpose is to allow having different flags/ACL categories for
subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't)
We create a small command table for every command that has subcommands
and each subcommand has its own flags, etc. (same as a "regular" command)
This commit also unites the Redis and the Sentinel command tables
## Affected commands
CONFIG
Used to have "admin ok-loading ok-stale no-script"
Changes:
1. Dropped "ok-loading" in all except GET (this doesn't change behavior since
there were checks in the code doing that)
XINFO
Used to have "read-only random"
Changes:
1. Dropped "random" in all except CONSUMERS
XGROUP
Used to have "write use-memory"
Changes:
1. Dropped "use-memory" in all except CREATE and CREATECONSUMER
COMMAND
No changes.
MEMORY
Used to have "random read-only"
Changes:
1. Dropped "random" in PURGE and USAGE
ACL
Used to have "admin no-script ok-loading ok-stale"
Changes:
1. Dropped "admin" in WHOAMI, GENPASS, and CAT
LATENCY
No changes.
MODULE
No changes.
SLOWLOG
Used to have "admin random ok-loading ok-stale"
Changes:
1. Dropped "random" in RESET
OBJECT
Used to have "read-only random"
Changes:
1. Dropped "random" in ENCODING and REFCOUNT
SCRIPT
Used to have "may-replicate no-script"
Changes:
1. Dropped "may-replicate" in all except FLUSH and LOAD
CLIENT
Used to have "admin no-script random ok-loading ok-stale"
Changes:
1. Dropped "random" in all except INFO and LIST
2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY
STRALGO
No changes.
PUBSUB
No changes.
CLUSTER
Changes:
1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots
SENTINEL
No changes.
(note that DEBUG also fits, but we decided not to convert it since it's for
debugging and anyway undocumented)
## New sub-command
This commit adds another element to the per-command output of COMMAND,
describing the list of subcommands, if any (in the same structure as "regular" commands)
Also, it adds a new subcommand:
```
COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)]
```
which returns a set of all commands (unless filters), but excluding subcommands.
## Module API
A new module API, RM_CreateSubcommand, was added, in order to allow
module writer to define subcommands
## ACL changes:
1. Now, that each subcommand is actually a command, each has its own ACL id.
2. The old mechanism of allowed_subcommands is redundant
(blocking/allowing a subcommand is the same as blocking/allowing a regular command),
but we had to keep it, to support the widespread usage of allowed_subcommands
to block commands with certain args, that aren't subcommands (e.g. "-select +select|0").
3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference.
4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands
(e.g. "+client -client|kill"), which wasn't possible in the past.
5. It is also possible to use the allowed_firstargs mechanism with subcommand.
For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except
for setting the log level.
6. All of the ACL changes above required some amount of refactoring.
## Misc
1. There are two approaches: Either each subcommand has its own function or all
subcommands use the same function, determining what to do according to argv[0].
For now, I took the former approaches only with CONFIG and COMMAND,
while other commands use the latter approach (for smaller blamelog diff).
2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec.
4. Bugfix: GETNAME was missing from CLIENT's help message.
5. Sentinel and Redis now use the same table, with the same function pointer.
Some commands have a different implementation in Sentinel, so we redirect
them (these are ROLE, PUBLISH, and INFO).
6. Command stats now show the stats per subcommand (e.g. instead of stats just
for "config" you will have stats for "config|set", "config|get", etc.)
7. It is now possible to use COMMAND directly on subcommands:
COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and
can be used in functions lookupCommandBySds and lookupCommandByCString)
8. STRALGO is now a container command (has "help")
## Breaking changes:
1. Command stats now show the stats per subcommand (see (5) above)
Prevent clients from being blocked forever in cluster when they block with their own module command
and the hash slot is migrated to another master at the same time.
These will get a redirection message when unblocked.
Also, release clients blocked on module commands when cluster is down (same as other blocked clients)
This commit adds basic tests for the main (non-cluster) redis test infra that test the cluster.
This was done because the cluster test infra can't handle some common test features,
but most importantly we only build the test modules with the non-cluster test suite.
note that rather than really supporting cluster operations by the test infra, it was added (as dup code)
in two files, one for module tests and one for non-modules tests, maybe in the future we'll refactor that.
Co-authored-by: Oran Agra <oran@redislabs.com>
in the past few days i've seen two failures in the valgrind daily test.
*** [err]: slave fails full sync and diskless load swapdb recovers it in tests/integration/replication.tcl
Replica didn't get into loading mode
can't reproduce it, but i'm hoping it's just too slow (to start loading within 5 seconds)
This is useful for approximating size computation of complex module types.
Note that the mem_usage2 callback is new and has not been released yet, which is why we can modify it.
obuf based eviction tests run until eviction occurs instead of assuming a certain
amount of writes will fill the obuf enough for eviction to occur.
This handles the kernel buffering written data and emptying the obuf even though
no one actualy reads from it.
The tests have a new timeout of 20sec: if the test doesn't pass after 20 sec it'll fail.
Hopefully this enough for our slow CI targets.
This also eliminates the need to skip some tests in TLS.
Tracking invalidation messages were sometimes sent in inconsistent order,
before the command's reply rather than after.
In addition to that, they were sometimes embedded inside other commands
responses, like MULTI-EXEC and MGET.
* Reduce delay between publishes to allow less time to write the obufs.
* More subscribed clients to buffer more data per publish.
* Make sure main connection isn't evicted (it has a large qbuf).
Changes in #9528 lead to memory leak if the command implementation
used rewriteClientCommandArgument inside MULTI-EXEC.
Adding an explicit test for that case since the test that uncovered it
didn't specifically target this scenario
When LUA call our C code, by default, the LUA stack has room for 10
elements. In most cases, this is more than enough but sometimes it's not
and the caller must verify the LUA stack size before he pushes elements.
On 3 places in the code, there was no verification of the LUA stack size.
On specific inputs this missing verification could have lead to invalid
memory write:
1. On 'luaReplyToRedisReply', one might return a nested reply that will
explode the LUA stack.
2. On 'redisProtocolToLuaType', the Redis reply might be deep enough
to explode the LUA stack (notice that currently there is no such
command in Redis that returns such a nested reply, but modules might
do it)
3. On 'ldbRedis', one might give a command with enough arguments to
explode the LUA stack (all the arguments will be pushed to the LUA
stack)
This commit is solving all those 3 issues by calling 'lua_checkstack' and
verify that there is enough room in the LUA stack to push elements. In
case 'lua_checkstack' returns an error (there is not enough room in the
LUA stack and it's not possible to increase the stack), we will do the
following:
1. On 'luaReplyToRedisReply', we will return an error to the user.
2. On 'redisProtocolToLuaType' we will exit with panic (we assume this
scenario is rare because it can only happen with a module).
3. On 'ldbRedis', we return an error.
The protocol parsing on 'ldbReplParseCommand' (LUA debugging)
Assumed protocol correctness. This means that if the following
is given:
*1
$100
test
The parser will try to read additional 94 unallocated bytes after
the client buffer.
This commit fixes this issue by validating that there are actually enough
bytes to read. It also limits the amount of data that can be sent by
the debugger client to 1M so the client will not be able to explode
the memory.
Co-authored-by: meir@redislabs.com <meir@redislabs.com>
- fix possible heap corruption in ziplist and listpack resulting by trying to
allocate more than the maximum size of 4GB.
- prevent ziplist (hash and zset) from reaching size of above 1GB, will be
converted to HT encoding, that's not a useful size.
- prevent listpack (stream) from reaching size of above 1GB.
- XADD will start a new listpack if the new record may cause the previous
listpack to grow over 1GB.
- XADD will respond with an error if a single stream record is over 1GB
- List type (ziplist in quicklist) was truncating strings that were over 4GB,
now it'll respond with an error.
Co-authored-by: sundb <sundbcn@gmail.com>
This change sets a low limit for multibulk and bulk length in the
protocol for unauthenticated connections, so that they can't easily
cause redis to allocate massive amounts of memory by sending just a few
characters on the network.
The new limits are 10 arguments of 16kb each (instead of 1m of 512mb)
Since we measure the COW size in this test by changing some keys and reading
the reported COW size, we need to ensure that the "dismiss mechanism" (#8974)
will not free memory and reduce the COW size.
For that, this commit changes the size of the keys to 512B (less than a page).
and because some keys may fall into the same page, we are modifying ten keys
on each iteration and check for at least 50% change in the COW size.
Note that this breaks compatibility because in the past doing:
DECRBY x -9223372036854775808
would succeed (and create an invalid result) and now this returns an error.
Remove hard coded multi-bulk limit (was 1,048,576), new limit is INT_MAX.
When client sends an m-bulk that's higher than 1024, we initially only allocate
the argv array for 1024 arguments, and gradually grow that allocation as arguments
are received.
Fixing CI test issues introduced in #8687
- valgrind warnings in readQueryFromClient when client was freed by processInputBuffer
- adding DEBUG pause-cron for tests not to be time dependent.
- skipping a test that depends on socket buffers / events not compatible with TLS
- making sure client got subscribed by not using deferring client
This commit makes it possible to explicitly trim the allocation of a
RedisModuleString.
Currently, Redis automatically trims strings that have been retained by
a module command when it returns. However, this is not thread safe and
may result with corruption in threaded modules.
Supporting explicit trimming offers a backwards compatible workaround to
this problem.
### Description
A mechanism for disconnecting clients when the sum of all connected clients is above a
configured limit. This prevents eviction or OOM caused by accumulated used memory
between all clients. It's a complimentary mechanism to the `client-output-buffer-limit`
mechanism which takes into account not only a single client and not only output buffers
but rather all memory used by all clients.
#### Design
The general design is as following:
* We track memory usage of each client, taking into account all memory used by the
client (query buffer, output buffer, parsed arguments, etc...). This is kept up to date
after reading from the socket, after processing commands and after writing to the socket.
* Based on the used memory we sort all clients into buckets. Each bucket contains all
clients using up up to x2 memory of the clients in the bucket below it. For example up
to 1m clients, up to 2m clients, up to 4m clients, ...
* Before processing a command and before sleep we check if we're over the configured
limit. If we are we start disconnecting clients from larger buckets downwards until we're
under the limit.
#### Config
`maxmemory-clients` max memory all clients are allowed to consume, above this threshold
we disconnect clients.
This config can either be set to 0 (meaning no limit), a size in bytes (possibly with MB/GB
suffix), or as a percentage of `maxmemory` by using the `%` suffix (e.g. setting it to `10%`
would mean 10% of `maxmemory`).
#### Important code changes
* During the development I encountered yet more situations where our io-threads access
global vars. And needed to fix them. I also had to handle keeps the clients sorted into the
memory buckets (which are global) while their memory usage changes in the io-thread.
To achieve this I decided to simplify how we check if we're in an io-thread and make it
much more explicit. I removed the `CLIENT_PENDING_READ` flag used for checking
if the client is in an io-thread (it wasn't used for anything else) and just used the global
`io_threads_op` variable the same way to check during writes.
* I optimized the cleanup of the client from the `clients_pending_read` list on client freeing.
We now store a pointer in the `client` struct to this list so we don't need to search in it
(`pending_read_list_node`).
* Added `evicted_clients` stat to `INFO` command.
* Added `CLIENT NO-EVICT ON|OFF` sub command to exclude a specific client from the
client eviction mechanism. Added corrosponding 'e' flag in the client info string.
* Added `multi-mem` field in the client info string to show how much memory is used up
by buffered multi commands.
* Client `tot-mem` now accounts for buffered multi-commands, pubsub patterns and
channels (partially), tracking prefixes (partially).
* CLIENT_CLOSE_ASAP flag is now handled in a new `beforeNextClient()` function so
clients will be disconnected between processing different clients and not only before sleep.
This new function can be used in the future for work we want to do outside the command
processing loop but don't want to wait for all clients to be processed before we get to it.
Specifically I wanted to handle output-buffer-limit related closing before we process client
eviction in case the two race with each other.
* Added a `DEBUG CLIENT-EVICTION` command to print out info about the client eviction
buckets.
* Each client now holds a pointer to the client eviction memory usage bucket it belongs to
and listNode to itself in that bucket for quick removal.
* Global `io_threads_op` variable now can contain a `IO_THREADS_OP_IDLE` value
indicating no io-threading is currently being executed.
* In order to track memory used by each clients in real-time we can't rely on updating
these stats in `clientsCron()` alone anymore. So now I call `updateClientMemUsage()`
(used to be `clientsCronTrackClientsMemUsage()`) after command processing, after
writing data to pubsub clients, after writing the output buffer and after reading from the
socket (and maybe other places too). The function is written to be fast.
* Clients are evicted if needed (with appropriate log line) in `beforeSleep()` and before
processing a command (before performing oom-checks and key-eviction).
* All clients memory usage buckets are grouped as follows:
* All clients using less than 64k.
* 64K..128K
* 128K..256K
* ...
* 2G..4G
* All clients using 4g and up.
* Added client-eviction.tcl with a bunch of tests for the new mechanism.
* Extended maxmemory.tcl to test the interaction between maxmemory and
maxmemory-clients settings.
* Added an option to flag a numeric configuration variable as a "percent", this means that
if we encounter a '%' after the number in the config file (or config set command) we
consider it as valid. Such a number is store internally as a negative value. This way an
integer value can be interpreted as either a percent (negative) or absolute value (positive).
This is useful for example if some numeric configuration can optionally be set to a percentage
of something else.
Co-authored-by: Oran Agra <oran@redislabs.com>
This commit introduced a new flag to the RM_Call:
'C' - Check if the command can be executed according to the ACLs associated with it.
Also, three new API's added to check if a command, key, or channel can be executed or accessed
by a user, according to the ACLs associated with it.
- RM_ACLCheckCommandPerm
- RM_ACLCheckKeyPerm
- RM_ACLCheckChannelPerm
The user for these API's is a RedisModuleUser object, that for a Module user returned by the RM_CreateModuleUser API, or for a general ACL user can be retrieved by these two new API's:
- RM_GetCurrentUserName - Retrieve the user name of the client connection behind the current context.
- RM_GetModuleUserFromUserName - Get a RedisModuleUser from a user name
As a result of getting a RedisModuleUser from name, it can now also access the general ACL users (not just ones created by the module).
This mean the already existing API RM_SetModuleUserACL(), can be used to change the ACL rules for such users.
This is similar to the recent addition of LMPOP/BLMPOP (#9373), but zset.
Syntax for the new ZMPOP command:
`ZMPOP numkeys [<key> ...] MIN|MAX [COUNT count]`
Syntax for the new BZMPOP command:
`BZMPOP timeout numkeys [<key> ...] MIN|MAX [COUNT count]`
Some background:
- ZPOPMIN/ZPOPMAX take only one key, and can return multiple elements.
- BZPOPMIN/BZPOPMAX take multiple keys, but return only one element from just one key.
- ZMPOP/BZMPOP can take multiple keys, and can return multiple elements from just one key.
Note that ZMPOP/BZMPOP can take multiple keys, it eventually operates on just on key.
And it will propagate as ZPOPMIN or ZPOPMAX with the COUNT option.
As new commands, if we can not pop any elements, the response like:
- ZMPOP: Return a NIL in both RESP2 and RESP3, unlike ZPOPMIN/ZPOPMAX return emptyarray.
- BZMPOP: Return a NIL in both RESP2 and RESP3 when timeout is reached, like BZPOPMIN/BZPOPMAX.
For the normal response is nested arrays in RESP2 and RESP3:
```
ZMPOP/BZMPOP
1) keyname
2) 1) 1) member1
2) score1
2) 1) member2
2) score2
In RESP2:
1) "myzset"
2) 1) 1) "three"
2) "3"
2) 1) "two"
2) "2"
In RESP3:
1) "myzset"
2) 1) 1) "three"
2) (double) 3
2) 1) "two"
2) (double) 2
```
i've seen this CI failure a couple of times on MacOS:
*** [err]: lazy free a stream with all types of metadata in tests/unit/lazyfree.tcl
lazyfree isn't done
only reason i can think of is that 500ms is sometimes not enough on slow systems.
Implements the [LIMIT limit] variant of SINTERCARD/ZINTERCARD.
Now with the LIMIT, we can stop the searching when cardinality
reaching the limit, and return the cardinality ASAP.
Note that in SINTERCARD, the old synatx was: `SINTERCARD key [key ...]`
In order to add a optional parameter, we must break the old synatx.
So the new syntax of SINTERCARD will be consistent with ZINTERCARD.
New syntax: `SINTERCARD numkeys key [key ...] [LIMIT limit]`.
Note that this means that SINTERCARD has a different syntax than
SINTER and SINTERSTORE (taking numkeys argument)
As for ZINTERCARD, we can easily add a optional parameter to it.
New syntax: `ZINTERCARD numkeys key [key ...] [LIMIT limit]`
Fix#7297
The problem:
Today, there is no way for a client library or app to know the key name indexes for commands such as
ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them.
For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to
resolve each execution of these commands with COMMAND GETKEYS.
The solution:
Introducing key specs other than the legacy "range" (first,last,step)
The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates
the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery
of 0 or more key arguments.
A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will
obviously remain unchanged.
A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it
must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order
to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no
need to use GETKEYS.
Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array
containing details about the spec (specific meaning for each spec type)
The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write.
clients should ignore any unfamiliar flags.
In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of
key specs:
1. `start_search`: Given an array of args, indicate where we should start searching for keys
2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys.
### start_search step specs
- `index`: specify an argument index explicitly
- `index`: 0 based index (1 means the first command argument)
- `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears.
- `keyword`: the string to search for
- `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end)
Examples:
- `SET` has start_search of type `index` with value `1`
- `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]`
- `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]`
### find_keys step specs
- `range`: specify `[count, step, limit]`.
- `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last
- `step`: how many args should we skip after finding a key, in order to find the next one
- `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on.
- “keynum”: specify `[keynum_index, first_key_index, step]`.
- `keynum_index`: is relative to the return of the `start_search` spec.
- `first_key_index`: is relative to `keynum_index`.
- `step`: how many args should we skip after finding a key, in order to find the next one
Examples:
- `SET` has `range` of `[0,1,0]`
- `MSET` has `range` of `[-1,2,0]`
- `XREAD` has `range` of `[-1,1,2]`
- `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]`
- `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value
`[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun)
Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key
args of the vast majority of commands.
If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option.
Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will
start searching in the wrong index).
The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never
report false information (assuming the command syntax is correct).
For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will
report only a subset of all keys - hence the `incomplete` flag.
Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that
COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe
the STORE keyword spec, as the word "store" can appear anywhere in the command).
We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for
all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime.
Comments:
1. Redis doesn't internally use the new specs, they are only used for COMMAND output.
2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called
legacy_range, that, if possible, is built according to the new specs.
3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for
example).
"incomplete" specs:
the command we have issues with are MIGRATE, STRALGO, and SORT
for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is
actually the string "keys" will return just a subset of the keys (hence, it's "incomplete")
for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a
key spec that is both "incomplete" and of "unknown type"
if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have
its own parser) to retrieve the keys.
please note that all commands, apart from the three mentioned above, have "complete" key specs
- Add `-u <uri>` command line option to support `redis://` URI scheme.
- included server connection information object (`struct cliConnInfo`),
used to describe an ip:port pair, db num user input, and user:pass to
avoid a large number of function arguments.
- Using sds on connection info strings for redis-benchmark/redis-cli
Co-authored-by: yoav-steinberg <yoav@monfort.co.il>
List functions operating on elements by index:
* RM_ListGet
* RM_ListSet
* RM_ListInsert
* RM_ListDelete
Iteration is done using a simple for loop over indices.
The index based functions use an internal iterator as an optimization.
This is explained in the docs:
```
* Many of the list functions access elements by index. Since a list is in
* essence a doubly-linked list, accessing elements by index is generally an
* O(N) operation. However, if elements are accessed sequentially or with
* indices close together, the functions are optimized to seek the index from
* the previous index, rather than seeking from the ends of the list.
*
* This enables iteration to be done efficiently using a simple for loop:
*
* long n = RM_ValueLength(key);
* for (long i = 0; i < n; i++) {
* RedisModuleString *elem = RedisModule_ListGet(key, i);
* // Do stuff...
* }
```
Before #9497, before redis-server was shut down, we did not manually shut down all the clients,
which would have prevented valgrind from detecting a memory leak in the client's argc.
* On `kill_server` make sure we close the default `"client"` connection.
* Don't reconnect when trying to execute the client's `close` command.
* On `restart_server` make sure to remove the (closed) default `"client"` after killing the old server.
The main idea is how to allow a master to load replication info from RDB file when rebooting, if master can load replication info it means that replicas may have the chance to psync with master, it can save much traffic.
The key point is we need guarantee safety and consistency, so there
are two differences between master and replica:
1. master would load the replication info as secondary ID and
offset, in case other masters have the same replid.
2. when master loading RDB, it would propagate expired keys as DEL
command to replication backlog, then replica can receive these
commands to delete stale keys.
p.s. the expired keys when RDB loading is useful for users, so
we show it as `rdb_last_load_keys_expired` and `rdb_last_load_keys_loaded` in info persistence.
Moreover, after load replication info, master should update
`no_replica_time` in case loading RDB cost too long time.
Make bitpos/bitcount support bit index:
```
BITPOS key bit [start [end [BIT|BYTE]]]
BITCOUNT key [start end [BIT|BYTE]]
```
The default behavior is `BYTE`, so these commands are still compatible with old.
Part two of implementing #8702 (zset), after #8887.
## Description of the feature
Replaced all uses of ziplist with listpack in t_zset, and optimized some of the code to optimize performance.
## Rdb format changes
New `RDB_TYPE_ZSET_LISTPACK` rdb type.
## Rdb loading improvements:
1) Pre-expansion of dict for validation of duplicate data for listpack and ziplist.
2) Simplifying the release of empty key objects when RDB loading.
3) Unify ziplist and listpack data verify methods for zset and hash, and move code to rdb.c.
## Interface changes
1) New `zset-max-listpack-entries` config is an alias for `zset-max-ziplist-entries` (same with `zset-max-listpack-value`).
2) OBJECT ENCODING will return listpack instead of ziplist.
## Listpack improvements:
1) Add `lpDeleteRange` and `lpDeleteRangeWithEntry` functions to delete a range of entries from listpack.
2) Improve the performance of `lpCompare`, converting from string to integer is faster than converting from integer to string.
3) Replace `snprintf` with `ll2string` to improve performance in converting numbers to strings in `lpGet()`.
## Zset improvements:
1) Improve the performance of `zzlFind` method, use `lpFind` instead of `lpCompare` in a loop.
2) Use `lpDeleteRangeWithEntry` instead of `lpDelete` twice to delete a element of zset.
## Tests
1) Add some unittests for `lpDeleteRange` and `lpDeleteRangeWithEntry` function.
2) Add zset RDB loading test.
3) Add benchmark test for `lpCompare` and `ziplsitCompare`.
4) Add empty listpack zset corrupt dump test.
Throw an error when a user is provided multiple times on the command line instead of silently throwing one of them away.
Remove unneeded validation for validating users on ACL load.
We want to add COUNT option for BLPOP.
But we can't do it without breaking compatibility due to the command arguments syntax.
So this commit introduce two new commands.
Syntax for the new LMPOP command:
`LMPOP numkeys [<key> ...] LEFT|RIGHT [COUNT count]`
Syntax for the new BLMPOP command:
`BLMPOP timeout numkeys [<key> ...] LEFT|RIGHT [COUNT count]`
Some background:
- LPOP takes one key, and can return multiple elements.
- BLPOP takes multiple keys, but returns one element from just one key.
- LMPOP can take multiple keys and return multiple elements from just one key.
Note that LMPOP/BLMPOP can take multiple keys, it eventually operates on just one key.
And it will propagate as LPOP or RPOP with the COUNT option.
As a new command, it still return NIL if we can't pop any elements.
For the normal response is nested arrays in RESP2 and RESP3, like:
```
LMPOP/BLMPOP
1) keyname
2) 1) element1
2) element2
```
I.e. unlike BLPOP that returns a key name and one element so it uses a flat array,
and LPOP that returns multiple elements with no key name, and again uses a flat array,
this one has to return a nested array, and it does for for both RESP2 and RESP3 (like SCAN does)
Some discuss can see: #766#8824
* Delay to discard cache master when full synchronization
* Don't disconnect with replicas before loading transferred RDB when full sync
Previously, once replica need to start full synchronization with master,
it will discard cached master whatever full synchronization is failed or
not.
Now we discard cached master only when transferring RDB is finished
and start to change data space, this make replica could start partial
resynchronization with another new master if new master is failed
during full synchronization.
When parsing an array type reply, ctx will be lost when recursively parsing its
elements, which will cause a memory leak in automemory mode.
This is a result of the changes in #9202
Add test for callReplyParseCollection fix
When a replica paused, it would not apply any commands event the command comes from master, if we feed the non-applied command to replication stream, the replication offset would be wrong, and data would be lost after failover(since replica's `master_repl_offset` grows but command is not applied).
To fix it, here are the changes:
* Don't update replica's replication offset or propagate commands to sub-replicas when it's paused in `commandProcessed`.
* Show `slave_read_repl_offset` in info reply.
* Add an assert to make sure master client should never be blocked unless pause or module (some modules may use block way to do background (parallel) processing and forward original block module command to the replica, it's not a good way but it can work, so the assert excludes module now, but someday in future all modules should rewrite block command to propagate like what `BLPOP` does).
Until now, giving a negative index seeks from the end of a list and a
positive seeks from the beginning. This change makes it seek from
the nearest end, regardless of the sign of the given index.
quicklistIndex is used by all list commands which operate by index.
LINDEX key 999999 in a list if 1M elements is greately optimized by
this change. Latency is cut by 75%.
LINDEX key -1000000 in a list of 1M elements, likewise.
LRANGE key -1 -1 is affected by this, since LRANGE converts the
indices to positive numbers before seeking.
The tests for corrupt dumps are updated to make sure the corrup
data is seeked in the same direction as before.
This one follow #9313 and goes deeper (validation of config file parsing)
Move the check/update logic to a new updateClientOutputBufferLimit
function. So that it can be used in CONFIG SET and config file parsing.
1. The output of --help:
* On the Usage line, just write [OPTIONS] [COMMAND ARGS...] instead listing
only a few arbitrary options and no command.
* For --cluster, describe that if the command is supplied on the command line,
the key must contain "{tag}". Otherwise, the command will not be sent to the
right cluster node.
* For -r, add a note that if -r is omitted, all commands in a benchmark will
use the same key. Also align the description.
* For -t, describe that -t is ignored if a command is supplied on the command
line.
2. Print a warning if -t is present when a specific command is supplied.
3. Print all warnings and errors to stderr.
4. Remove -e from calls in redis-benchmark test suite.
In old way, we always increase server.dirty in BITSET and BITFIELD SET.
Even the command doesn't really change anything. This commit make
sure BITSET and BITFIELD SET only increase dirty when the value changed.
Because of that, if the value not changed, some others implications:
- Avoid adding useless AOF
- Reduce replication traffic
- Will not trigger keyspace notifications (setbit)
- Will not invalidate WATCH
- Will not sent the invalidation message to the tracking client
We only run OOM related tests on x86_64 and aarch64, as jemalloc on other
platforms (notably s390x) may actually succeed very large allocations. As
a result the test may hang for a very long time at the cleanup phase,
iterating as many as 2^61 hash table slots.
Part one of implementing #8702 (taking hashes first before other types)
## Description of the feature
1. Change ziplist encoded hash objects to listpack encoding.
2. Convert existing ziplists on RDB loading time. an O(n) operation.
## Rdb format changes
1. Add RDB_TYPE_HASH_LISTPACK rdb type.
2. Bump RDB_VERSION to 10
## Interface changes
1. New `hash-max-listpack-entries` config is an alias for `hash-max-ziplist-entries` (same with `hash-max-listpack-value`)
2. OBJECT ENCODING will return `listpack` instead of `ziplist`
## Listpack improvements:
1. Support direct insert, replace integer element (rather than convert back and forth from string)
3. Add more listpack capabilities to match the ziplist ones (like `lpFind`, `lpRandomPairs` and such)
4. Optimize element length fetching, avoid multiple calculations
5. Use inline to avoid function call overhead.
## Tests
1. Add a new test to the RDB load time conversion
2. Adding the listpack unit tests. (based on the one in ziplist.c)
3. Add a few "corrupt payload: fuzzer findings" tests, and slightly modify existing ones.
Co-authored-by: Oran Agra <oran@redislabs.com>
This commit mainly fixes empty keys due to RDB loading and restore command,
which was omitted in #9297.
1) When loading quicklsit, if all the ziplists in the quicklist are empty, NULL will be returned.
If only some of the ziplists are empty, then we will skip the empty ziplists silently.
2) When loading hash zipmap, if zipmap is empty, sanitization check will fail.
3) When loading hash ziplist, if ziplist is empty, NULL will be returned.
4) Add RDB loading test with sanitize.
Replication client no longer checks incoming command length against the client-query-buffer-limit. This makes the master able to replicate commands longer than replica's configured client-query-buffer-limit
The execution of the RPOPLPUSH command by the fuzzer created junk keys,
that were later being selected by RANDOMKEY and modified.
This also meant that lists were statistically tested more than other
files.
Fix the fuzzer not to pass junk key names to RPOPLPUSH, and add a check
that detects that new keys are not added by the fuzzer to detect future
similar issues.
Recently we found two issues in the fuzzer tester: #9302#9285
After fixing them, more problems surfaced and this PR (as well as #9297) aims to fix them.
Here's a list of the fixes
- Prevent an overflow when allocating a dict hashtable
- Prevent OOM when attempting to allocate a huge string
- Prevent a few invalid accesses in listpack
- Improve sanitization of listpack first entry
- Validate integrity of stream consumer groups PEL
- Validate integrity of stream listpack entry IDs
- Validate ziplist tail followed by extra data which start with 0xff
Co-authored-by: sundb <sundbcn@gmail.com>
When we load rdb or restore command, if we encounter a length of 0, it will result in the creation of an empty key.
This could either be a corrupt payload, or a result of a bug (see #8453 )
This PR mainly fixes the following:
1) When restore command will return `Bad data format` error.
2) When loading RDB, we will silently discard the key.
Co-authored-by: Oran Agra <oran@redislabs.com>
The psync2 test has failed several times recently.
In #9159 we only solved half of the problem.
i.e. reordering of the replica that's already connected to
the newly promoted master.
Consider this scenario:
0 slaveof 2
1 slaveof 2
3 slaveof 2
4 slaveof 1
0 slaveof no one, became a new master got a new replid
2 slaveof 0, partial resync and got the new replid
3 reconnect 2, inherit the new replid
3 slaveof 4, use the new replid and got a full resync
And another scenario:
1 slaveof 3
2 slaveof 4
3 slaveof 0
4 slaveof 0
4 slaveof no one, became a new master got a new replid
2 reconnect 4, inherit the new replid
2 slaveof 1, use the new replid and got a full resync
So maybe we should reattach replicas in the right order.
i.e. In the above example, if it would have reattached 1, 3 and 0 to
the new chain formed by 4 before trying to attach 2 to 1, it would succeed.
This commit break the SLAVEOF loop into two loops. (ideas from oran)
First loop that uses random to decide who replicates from who.
Second loop that does the actual SLAVEOF command.
In the second loop, we make sure to execute it in the right order,
and after each SLAVEOF, wait for it to be connected before we proceed.
Co-authored-by: Oran Agra <oran@redislabs.com>
This makes it possible to tune many parameters that were previously hard coded.
We don't intend these to be user configurable, but only used by tests to accelerate certain conditions which would otherwise take a long time and slow down the test suite.
Co-authored-by: Lucas Guang Yang <l84193800@china.huawei.com>
## Backgroud
As we know, after `fork`, one process will copy pages when writing data to these
pages(CoW), and another process still keep old pages, they totally cost more memory.
For redis, we suffered that redis consumed much memory when the fork child is serializing
key/values, even that maybe cause OOM.
But actually we find, in redis fork child process, the child process don't need to keep some
memory and parent process may write or update that, for example, child process will never
access the key-value that is serialized but users may update it in parent process.
So we think it may reduce COW if the child process release memory that it is not needed.
## Implementation
For releasing key value in child process, we may think we call `decrRefCount` to free memory,
but i find the fork child process still use much memory when we don't write any data to redis,
and it costs much more time that slows down bgsave. Maybe because memory allocator doesn't
really release memory to OS, and it may modify some inner data for this free operation, especially
when we free small objects.
Moreover, CoW is based on pages, so it is a easy way that we only free the memory bulk that is
not less than kernel page size. madvise(MADV_DONTNEED) can quickly release specified region
pages to OS bypassing memory allocator, and allocator still consider that this memory still is used
and don't change its inner data.
There are some buffers we can release in the fork child process:
- **Serialized key-values**
the fork child process never access serialized key-values, so we try to free them.
Because we only can release big bulk memory, and it is time consumed to iterate all
items/members/fields/entries of complex data type. So we decide to iterate them and
try to release them only when their average size of item/member/field/entry is more
than page size of OS.
- **Replication backlog**
Because replication backlog is a cycle buffer, it will be changed quickly if redis has heavy
write traffic, but in fork child process, we don't need to access that.
- **Client buffers**
If clients have requests during having the fork child process, clients' buffer also be changed
frequently. The memory includes client query buffer, output buffer, and client struct used memory.
To get child process peak private dirty memory, we need to count peak memory instead
of last used memory, because the child process may continue to release memory (since
COW used to only grow till now, the last was equivalent to the peak).
Also we're adding a new `current_cow_peak` info variable (to complement the existing
`current_cow_size`)
Co-authored-by: Oran Agra <oran@redislabs.com>
Fix test introduced in #9202 that failed on 32bit CI.
The failure was due to a wrong double comparison.
Change code to stringify the double first and then compare.
## Current state
1. Lua has its own parser that handles parsing `reds.call` replies and translates them
to Lua objects that can be used by the user Lua code. The parser partially handles
resp3 (missing big number, verbatim, attribute, ...)
2. Modules have their own parser that handles parsing `RM_Call` replies and translates
them to RedisModuleCallReply objects. The parser does not support resp3.
In addition, in the future, we want to add Redis Function (#8693) that will probably
support more languages. At some point maintaining so many parsers will stop
scaling (bug fixes and protocol changes will need to be applied on all of them).
We will probably end up with different parsers that support different parts of the
resp protocol (like we already have today with Lua and modules)
## PR Changes
This PR attempt to unified the reply parsing of Lua and modules (and in the future
Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser
handles parsing the reply and calls different callbacks to allow the users (another
unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply.
### Lua API Additions
The code that handles reply parsing on `scripting.c` was removed. Instead, it uses
the resp_parser to parse and create a Lua object out of the reply. As mentioned
above the Lua parser did not handle parsing big numbers, verbatim, and attribute.
The new parser can handle those and so Lua also gets it for free.
Those are translated to Lua objects in the following way:
1. Big Number - Lua table `{'big_number':'<str representation for big number>'}`
2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}`
3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it.
Tests were added to check resp3 reply parsing on Lua
### Modules API Additions
The reply parsing code on `module.c` was also removed and the new resp_parser is used instead.
In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c`
(in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is
that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the
fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis
will automatically chose the reply protocol base on the current client set on the RedisModuleCtx
(this mode will mostly be used when the module want to pass the reply to the client as is).
In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies:
* New RedisModuleCallReply types:
* `REDISMODULE_REPLY_MAP`
* `REDISMODULE_REPLY_SET`
* `REDISMODULE_REPLY_BOOL`
* `REDISMODULE_REPLY_DOUBLE`
* `REDISMODULE_REPLY_BIG_NUMBER`
* `REDISMODULE_REPLY_VERBATIM_STRING`
* `REDISMODULE_REPLY_ATTRIBUTE`
* New RedisModuleAPI:
* `RedisModule_CallReplyDouble` - getting double value from resp3 double reply
* `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply
* `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply
* `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply
* `RedisModule_CallReplySetElement` - getting element from resp3 set reply
* `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply
* `RedisModule_CallReplyAttribute` - getting a reply attribute
* `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply
* New context flags:
* `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3
Tests were added to check the new RedisModuleAPI
### Modules API Changes
* RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3
but the client expects resp2. This is not a breaking change because in order to get a resp3
CallReply one needs to specifically specify `3` as a parameter to the fmt argument of
`RM_Call` (as mentioned above).
Tests were added to check this change
### More small Additions
* Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script
flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol`
and check the resp3 parsing code.
Co-authored-by: Oran Agra <oran@redislabs.com>
Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
Add SINTERCARD and ZINTERCARD commands that are similar to
ZINTER and SINTER but only return the cardinality with minimum
processing and memory overheads.
Co-authored-by: Oran Agra <oran@redislabs.com>
When redis-cli received ASK, it used string matching wrong and didn't
handle it.
When we access a slot which is in migrating state, it maybe
return ASK. After redirect to the new node, we need send ASKING
command before retry the command. In this PR after redis-cli receives
ASK, we send a ASKING command before send the origin command
after reconnecting.
Other changes:
* Make redis-cli -u and -c (unix socket and cluster mode) incompatible
with one another.
* When send command fails, we avoid the 2nd reconnect retry and just
print the error info. Users will decide how to do next.
See #9277.
* Add a test faking two redis nodes in TCL to just send ASK and OK in
redis protocol to test ASK behavior.
Co-authored-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
Co-authored-by: Oran Agra <oran@redislabs.com>
Add NX, XX, GT, and LT flags to EXPIRE, PEXPIRE, EXPIREAT, PEXAPIREAT.
- NX - only modify the TTL if no TTL is currently set
- XX - only modify the TTL if there is a TTL currently set
- GT - only increase the TTL (considering non-volatile keys as infinite expire time)
- LT - only decrease the TTL (considering non-volatile keys as infinite expire time)
return value of the command is 0 when the operation was skipped due to one of these flags.
Signed-off-by: Ning Sun <sunng@protonmail.com>
Fixes:
- When a consumer is created as a side effect, redis didn't issue a keyspace notification,
nor incremented the server.dirty (affects periodic snapshots).
this was a bug in XREADGROUP, XCLAIM, and XAUTOCLAIM.
- When attempting to delete a non-existent consumer, don't issue a keyspace notification
and don't increment server.dirty
this was a bug in XGROUP DELCONSUMER
Other changes:
- Changed streamLookupConsumer() to always only do lookup consumer (never do implicit creation),
Its last seen time is updated unless the SLC_NO_REFRESH flag is specified.
- Added streamCreateConsumer() to create a new consumer. When the creation is successful,
it will notify and dirty++ unless the SCC_NO_NOTIFY or SCC_NO_DIRTIFY flags is specified.
- Changed streamDelConsumer() to always only do delete consumer.
- Added keyspace notifications tests about stream events.
With an empty src key, we need to deal with two situations:
1. non-STORE: We should return emptyarray.
2. STORE: Try to delete the store key and return 0.
This applies to both GEOSEARCHSTORE (new to v6.2), and
also GEORADIUS STORE (which was broken since forever)
This pr try to fix#9261. i.e. both STORE variants would have behaved
like the non-STORE variants when the source key was missing,
returning an empty array and not deleting the destination key,
instead of returning 0, and deleting the destination key.
Also add more tests for some commands.
- GEORADIUS: wrong type src key, non existing src key, empty search,
store with non existing src key, store with empty search
- GEORADIUSBYMEMBER: wrong type src key, non existing src key,
non existing member, store with non existing src key
- GEOSEARCH: wrong type src key, non existing src key, empty search,
frommember with non existing member
- GEOSEARCHSTORE: wrong type key, non existing src key,
fromlonlat with empty search, frommember with non existing member
Co-authored-by: Oran Agra <oran@redislabs.com>
In some cases large replies on slow systems may only be partially read
by the test suite, resulting with parsing errors.
This fix is still timing sensitive but should greatly reduce the chances
of this happening.
The issue is that when a sentinel with the same address and IP is turned on with a different runid, its port is set to 0 but it is still present in the dictionary master->sentinels which contain all the sentinels for a master.
This causes a problem when we do INFO SENTINEL because it takes the size of the dictionary of sentinels. This might also cause a problem for failover if enough sentinels have their port set to 0 since the number of voters in failover is also determined by the size of the dictionary of sentinels.
This commits removes the sentinels with the port set to zero from the dictionary of sentinels.
Fixes#8786
GETBIT, SETBIT may access wrong address because of wrap.
BITCOUNT and BITPOS may return wrapped results.
BITFIELD may access the wrong address but also allocate insufficient memory and segfault (see CVE-2021-32761).
This commit uses `uint64_t` or `long long` instead of `size_t`.
related https://github.com/redis/redis/pull/8096
At 32bit platform:
> setbit bit 4294967295 1
(integer) 0
> config set proto-max-bulk-len 536870913
OK
> append bit "\xFF"
(integer) 536870913
> getbit bit 4294967296
(integer) 0
When the bit index is larger than 4294967295, size_t can't hold bit index. In the past, `proto-max-bulk-len` is limit to 536870912, so there is no problem.
After this commit, bit position is stored in `uint64_t` or `long long`. So when `proto-max-bulk-len > 536870912`, 32bit platforms can still be correct.
For 64bit platform, this problem still exists. The major reason is bit pos 8 times of byte pos. When proto-max-bulk-len is very larger, bit pos may overflow.
But at 64bit platform, we don't have so long string. So this bug may never happen.
Additionally this commit add a test cost `512MB` memory which is tag as `large-memory`. Make freebsd ci and valgrind ci ignore this test.
- promote the code in DEBUG PROTOCOL to addReplyBigNum
- DEBUG PROTOCOL ATTRIB skips the attribute when client is RESP2
- networking.c addReply for push and attributes generate assertion when
called on a RESP2 client, anything else would produce a broken
protocol that clients can't handle.
There are two issues fixed in this commit:
1. we want to fail the EXEC command in case there is a watched key that's logically
expired but not yet deleted by active expire or lazy expire.
2. we saw that currently cache time is update in every `call()` (including nested calls),
this time is being also being use for the isKeyExpired comparison, we want to update
the cache time only in the first call (execCommand)
Co-authored-by: Oran Agra <oran@redislabs.com>
1. redis-cli can output --rdb data to stdout
but redis-cli also write some messages to stdout which will mess up the rdb.
2. Make redis-cli flush stdout when printing a reply
This was needed in order to fix a hung in redis-cli test that uses
--replica.
Note that printf does flush when there's a newline, but fwrite does not.
3. fix the redis-cli --replica test which used to pass previously
because it didn't really care what it read, and because redis-cli
used printf to print these other things to stdout.
4. improve redis-cli --replica test to run with both diskless and disk-based.
Co-authored-by: Oran Agra <oran@redislabs.com>
Co-authored-by: Viktor Söderqvist <viktor@zuiderkwast.se>
due to a copy-paste bug, it used to reply with null response rather than empty array.
this commit includes new tests that are looking at the RESP response directly in
order to be able to tell the difference between them.
Co-authored-by: Oran Agra <oran@redislabs.com>
fixes test issue introduced in #9167
1. invalid reads due to accessing non-retained string (passed as unblock context).
2. leaking module blocked client context, see #6922 for info.
Modules that use background threads with thread safe contexts are likely
to use RM_BlockClient() without a timeout function, because they do not
set up a timeout.
Before this commit, `CLIENT UNBLOCK` would result with a crash as the
`NULL` timeout callback is called. Beyond just crashing, this is also
logically wrong as it may throw the module into an unexpected client
state.
This commits makes `CLIENT UNBLOCK` on such clients behave the same as
any other client that is not in a blocked state and therefore cannot be
unblocked.
*** [err]: PSYNC2: total sum of full synchronizations is exactly 4 intests/integration/psync2.tcl
Expected 5 == 4 (context: type eval line 8 cmd {assert {$sum == 4}} proc::test)
Sometime the test got an unexpected full sync since a replica switch to master,
before the new master change propagated the new replid to all replicas,
a replica attempted to sync with it using a wrong replid and triggered a full resync.
Consider this scenario:
1 slaveof 4 full resync
0 slaveof 4 full resync
2 slaveof 0 full resync
3 slaveof 1 full resync
1 slaveof no one, replid changed
3 reconnect 1, did a partial resyn and got the new replid
Before 2 inherits the new replid.
3 slaveof 2
3 try to do a partial resyn with 2.
But their replication ids are inconsistent, so a full resync happens.
:) A special thank you for oran and helping me in this test case.
Co-authored-by: Oran Agra <oran@redislabs.com>
Return a bad score when used with negative count (or count of 1), and non-ziplist encoded zset.
Also add test to validate the return value and cover the issue.
In the past, the first bind address that was explicitly specified was
also used to bind outgoing connections. This could result with some
problems. For example: on some systems using `bind 127.0.0.1` would
result with outgoing connections also binding to `127.0.0.1` and failing
to connect to remote addresses.
With the recent change to the way `bind` is handled, this presented
other issues:
* The default first bind address is '*' which is not a valid address.
* We make no distinction between user-supplied config that is identical
to the default, and the default config.
This commit addresses both these issues by introducing an explicit
configuration parameter to control the bind address on outgoing
connections.
- Introduce a new sdssubstr api as a building block for sdsrange.
The API of sdsrange is many times hard to work with and also has
corner case that cause bugs. sdsrange is easy to work with and also
simplifies the implementation of sdsrange.
- Revert the fix to RM_StringTruncate and just use sdssubstr instead of
sdsrange.
- Solve valgrind warnings from the new tests introduced by the previous
PR.
* Specifying an empty `bind ""` configuration prevents Redis from listening on any TCP port. Before this commit, such configuration was not accepted.
* Using `CONFIG GET bind` will always return an explicit configuration value. Before this commit, if a bind address was not specified the returned value was empty (which was an anomaly).
Another behavior change is that modifying the `bind` configuration to a non-default value will NO LONGER DISABLE protected-mode implicitly.
Previously, passing 0 for newlen would not truncate the string at all.
This adds handling of this case, freeing the old string and creating a new empty string.
Other changes:
- Move `src/modules/testmodule.c` to `tests/modules/basics.c`
- Introduce that basic test into the test suite
- Add tests to cover StringTruncate
- Add `test-modules` build target for the main makefile
- Extend `distclean` build target to clean modules too
# replication-3.tcl
had a test timeout failure with valgrind on daily CI:
```
*** [err]: SLAVE can reload "lua" AUX RDB fields of duplicated scripts in tests/integration/replication-3.tcl
Replication not started.
```
replication took more than 70 seconds.
https://github.com/redis/redis/runs/2854037905?check_suite_focus=true
on my machine it takes only about 30, but i can see how 50 seconds isn't enough.
# replication.tcl
loading was over too quickly in freebsd daily CI:
```
*** [err]: slave fails full sync and diskless load swapdb recovers it in tests/integration/replication.tcl
Expected '0' to be equal to '1' (context: type eval line 44 cmd {assert_equal [s -1 loading] 1} proc ::start_server)
```
# rdb.tcl
loading was over too quickly.
increase the time loading takes, and decrease the amount of work we try to achieve in that time.
The `Tracking gets notification of expired keys` test in tracking.tcl
used to hung in valgrind CI quite a lot.
It turns out the reason is that with valgrind and a busy machine, the
server cron active expire cycle could easily run in the same event loop
as the command that created `mykey`, so that when they key got expired,
there were two change events to broadcast, one that set the key and one
that expired it, but since we used raxTryInsert, the client that was
associated with the "last" change was the one that created the key, so
the NOLOOP filtered that event.
This commit adds a test that reproduces the problem by using lazy expire
in a multi-exec which makes sure the key expires in the same event loop
as the one that added it.
Fix test failure which introduced by #9003.
The following case will occur when querybuf expansion will allocate memory equal to (16*1024)k.
1) make use ```CFLAGS=-DNO_MALLOC_USABLE_SIZE```.
2) ```malloc``` will not allocate more under ```alpine```.
Create new module type enhanced callbacks: mem_usage2, free_effort2, unlink2, copy2.
These will be given a context point from which the module can obtain the key name and database id.
In addition the digest and defrag context can now be used to obtain the key name and database id.
When using RESP3, ZPOPMAX/ZPOPMIN should return nested arrays for consistency
with other commands (e.g. ZRANGE).
We do that only when COUNT argument is present (similarly to how LPOP behaves).
for reasoning see https://github.com/redis/redis/issues/8824#issuecomment-855427955
This is a breaking change only when RESP3 is used, and COUNT argument is present!
The initialize memory of `querybuf` is `PROTO_IOBUF_LEN(1024*16) * 2` (due to sdsMakeRoomFor being greedy), under `jemalloc`, the allocated memory will be 40k.
This will most likely result in the `querybuf` being resized when call `clientsCronResizeQueryBuffer` unless the client requests it fast enough.
Note that this bug existed even before #7875, since the condition for resizing includes the sds headers (32k+6).
## Changes
1. Use non-greedy sdsMakeRoomFor when allocating the initial query buffer (of 16k).
1. Also use non-greedy allocation when working with BIG_ARG (we won't use that extra space anyway)
2. in case we did use a greedy allocation, read as much as we can into the buffer we got (including internal frag), to reduce system calls.
3. introduce a dedicated constant for the shrinking (same value as before)
3. Add test for querybuf.
4. improve a maxmemory test by ignoring the effect of replica query buffers (can accumulate many ACKs on slow env)
5. improve a maxmemory by disabling slowlog (it will cause slight memory growth on slow env).
Today when we load the AOF on startup, the loadAppendOnlyFile checks if
the file is openning for reading.
This check is redundent (dead code) as we open the AOF file for writing at initServer,
and the file will always be existing for the loadAppendOnlyFile.
In this commit:
- remove all the exit(1) from loadAppendOnlyFile, as it is the caller
responsibility to decide what to do in case of failure.
- move the opening of the AOF file for writing, to be after we loading it.
- avoid return -ERR in DEBUG LOADAOF, when the AOF is existing but empty
SINTERSTORE would have deleted the dest key right away,
even when later on it is bound to fail on an (WRONGTYPE) error.
With this change it first picks up all the input keys, and only later
delete the dest key if one is empty.
Also add more tests for some commands.
Mainly focus on
- `wrong type error`:
expand test case (base on sinter bug) in non-store variant
add tests for store variant (although it exists in non-store variant, i think it would be better to have same tests)
- the dstkey result when we meet `non-exist key (empty set)` in *store
sdiff:
- improve test case about wrong type error (the one we found in sinter, although it is safe in sdiff)
- add test about using non-exist key (treat it like an empty set)
sdiffstore:
- according to sdiff test case, also add some tests about `wrong type error` and `non-exist key`
- the different is that in sdiffstore, we will consider the `dstkey` result
sunion/sunionstore add more tests (same as above)
sinter/sinterstore also same as above ...