redict/tests/unit/expire.tcl

908 lines
30 KiB
Tcl
Raw Normal View History

2024-03-21 09:30:47 -04:00
# SPDX-FileCopyrightText: 2024 Redict Contributors
# SPDX-FileCopyrightText: 2024 Salvatore Sanfilippo <antirez at gmail dot com>
#
# SPDX-License-Identifier: BSD-3-Clause
# SPDX-License-Identifier: LGPL-3.0-only
2024-03-21 09:30:47 -04:00
2010-06-02 17:14:55 -04:00
start_server {tags {"expire"}} {
test {EXPIRE - set timeouts multiple times} {
r set x foobar
set v1 [r expire x 5]
set v2 [r ttl x]
set v3 [r expire x 10]
set v4 [r ttl x]
r expire x 2
list $v1 $v2 $v3 $v4
} {1 [45] 1 10}
test {EXPIRE - It should be still possible to read 'x'} {
r get x
} {foobar}
2010-06-02 18:16:10 -04:00
tags {"slow"} {
test {EXPIRE - After 2.1 seconds the key should no longer be here} {
after 2100
2010-06-02 18:16:10 -04:00
list [r get x] [r exists x]
} {{} 0}
}
test {EXPIRE - write on expire should work} {
r del x
r lpush x foo
r expire x 1000
r lpush x bar
r lrange x 0 -1
} {bar foo}
test {EXPIREAT - Check for EXPIRE alike behavior} {
r del x
r set x foo
r expireat x [expr [clock seconds]+15]
r ttl x
} {1[345]}
test {SETEX - Set + Expire combo operation. Check for TTL} {
r setex x 12 test
r ttl x
} {1[012]}
test {SETEX - Check value} {
r get x
} {test}
test {SETEX - Overwrite old key} {
r setex y 1 foo
r get y
} {foo}
2010-06-02 18:26:39 -04:00
tags {"slow"} {
test {SETEX - Wait for the key to expire} {
after 1100
2010-06-02 18:26:39 -04:00
r get y
} {}
}
test {SETEX - Wrong time parameter} {
catch {r setex z -10 foo} e
set _ $e
} {*invalid expire*}
2010-08-03 08:25:22 -04:00
test {PERSIST can undo an EXPIRE} {
r set x foo
r expire x 50
list [r ttl x] [r persist x] [r ttl x] [r get x]
} {50 1 -1 foo}
test {PERSIST returns 0 against non existing or non volatile keys} {
r set x foo
list [r persist foo] [r persist nokeyatall]
} {0 0}
Squash merging 125 typo/grammar/comment/doc PRs (#7773) List of squashed commits or PRs =============================== commit 66801ea Author: hwware <wen.hui.ware@gmail.com> Date: Mon Jan 13 00:54:31 2020 -0500 typo fix in acl.c commit 46f55db Author: Itamar Haber <itamar@redislabs.com> Date: Sun Sep 6 18:24:11 2020 +0300 Updates a couple of comments Specifically: * RM_AutoMemory completed instead of pointing to docs * Updated link to custom type doc commit 61a2aa0 Author: xindoo <xindoo@qq.com> Date: Tue Sep 1 19:24:59 2020 +0800 Correct errors in code comments commit a5871d1 Author: yz1509 <pro-756@qq.com> Date: Tue Sep 1 18:36:06 2020 +0800 fix typos in module.c commit 41eede7 Author: bookug <bookug@qq.com> Date: Sat Aug 15 01:11:33 2020 +0800 docs: fix typos in comments commit c303c84 Author: lazy-snail <ws.niu@outlook.com> Date: Fri Aug 7 11:15:44 2020 +0800 fix spelling in redis.conf commit 1eb76bf Author: zhujian <zhujianxyz@gmail.com> Date: Thu Aug 6 15:22:10 2020 +0800 add a missing 'n' in comment commit 1530ec2 Author: Daniel Dai <764122422@qq.com> Date: Mon Jul 27 00:46:35 2020 -0400 fix spelling in tracking.c commit e517b31 Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:32 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit c300eff Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:23 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit 4c058a8 Author: 陈浩鹏 <chenhaopeng@heytea.com> Date: Thu Jun 25 19:00:56 2020 +0800 Grammar fix and clarification commit 5fcaa81 Author: bodong.ybd <bodong.ybd@alibaba-inc.com> Date: Fri Jun 19 10:09:00 2020 +0800 Fix typos commit 4caca9a Author: Pruthvi P <pruthvi@ixigo.com> Date: Fri May 22 00:33:22 2020 +0530 Fix typo eviciton => eviction commit b2a25f6 Author: Brad Dunbar <dunbarb2@gmail.com> Date: Sun May 17 12:39:59 2020 -0400 Fix a typo. commit 12842ae Author: hwware <wen.hui.ware@gmail.com> Date: Sun May 3 17:16:59 2020 -0400 fix spelling in redis conf commit ddba07c Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Sat May 2 23:25:34 2020 +0100 Correct a "conflicts" spelling error. commit 8fc7bf2 Author: Nao YONASHIRO <yonashiro@r.recruit.co.jp> Date: Thu Apr 30 10:25:27 2020 +0900 docs: fix EXPIRE_FAST_CYCLE_DURATION to ACTIVE_EXPIRE_CYCLE_FAST_DURATION commit 9b2b67a Author: Brad Dunbar <dunbarb2@gmail.com> Date: Fri Apr 24 11:46:22 2020 -0400 Fix a typo. commit 0746f10 Author: devilinrust <63737265+devilinrust@users.noreply.github.com> Date: Thu Apr 16 00:17:53 2020 +0200 Fix typos in server.c commit 92b588d Author: benjessop12 <56115861+benjessop12@users.noreply.github.com> Date: Mon Apr 13 13:43:55 2020 +0100 Fix spelling mistake in lazyfree.c commit 1da37aa Merge: 2d4ba28 af347a8 Author: hwware <wen.hui.ware@gmail.com> Date: Thu Mar 5 22:41:31 2020 -0500 Merge remote-tracking branch 'upstream/unstable' into expiretypofix commit 2d4ba28 Author: hwware <wen.hui.ware@gmail.com> Date: Mon Mar 2 00:09:40 2020 -0500 fix typo in expire.c commit 1a746f7 Author: SennoYuki <minakami1yuki@gmail.com> Date: Thu Feb 27 16:54:32 2020 +0800 fix typo commit 8599b1a Author: dongheejeong <donghee950403@gmail.com> Date: Sun Feb 16 20:31:43 2020 +0000 Fix typo in server.c commit f38d4e8 Author: hwware <wen.hui.ware@gmail.com> Date: Sun Feb 2 22:58:38 2020 -0500 fix typo in evict.c commit fe143fc Author: Leo Murillo <leonardo.murillo@gmail.com> Date: Sun Feb 2 01:57:22 2020 -0600 Fix a few typos in redis.conf commit 1ab4d21 Author: viraja1 <anchan.viraj@gmail.com> Date: Fri Dec 27 17:15:58 2019 +0530 Fix typo in Latency API docstring commit ca1f70e Author: gosth <danxuedexing@qq.com> Date: Wed Dec 18 15:18:02 2019 +0800 fix typo in sort.c commit a57c06b Author: ZYunH <zyunhjob@163.com> Date: Mon Dec 16 22:28:46 2019 +0800 fix-zset-typo commit b8c92b5 Author: git-hulk <hulk.website@gmail.com> Date: Mon Dec 16 15:51:42 2019 +0800 FIX: typo in cluster.c, onformation->information commit 9dd981c Author: wujm2007 <jim.wujm@gmail.com> Date: Mon Dec 16 09:37:52 2019 +0800 Fix typo commit e132d7a Author: Sebastien Williams-Wynn <s.williamswynn.mail@gmail.com> Date: Fri Nov 15 00:14:07 2019 +0000 Minor typo change commit 47f44d5 Author: happynote3966 <01ssrmikururudevice01@gmail.com> Date: Mon Nov 11 22:08:48 2019 +0900 fix comment typo in redis-cli.c commit b8bdb0d Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 18:00:17 2019 +0800 Fix a spelling mistake of comments in defragDictBucketCallback commit 0def46a Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 13:09:27 2019 +0800 fix some spelling mistakes of comments in defrag.c commit f3596fd Author: Phil Rajchgot <tophil@outlook.com> Date: Sun Oct 13 02:02:32 2019 -0400 Typo and grammar fixes Redis and its documentation are great -- just wanted to submit a few corrections in the spirit of Hacktoberfest. Thanks for all your work on this project. I use it all the time and it works beautifully. commit 2b928cd Author: KangZhiDong <worldkzd@gmail.com> Date: Sun Sep 1 07:03:11 2019 +0800 fix typos commit 33aea14 Author: Axlgrep <axlgrep@gmail.com> Date: Tue Aug 27 11:02:18 2019 +0800 Fixed eviction spelling issues commit e282a80 Author: Simen Flatby <simen@oms.no> Date: Tue Aug 20 15:25:51 2019 +0200 Update comments to reflect prop name In the comments the prop is referenced as replica-validity-factor, but it is really named cluster-replica-validity-factor. commit 74d1f9a Author: Jim Green <jimgreen2013@qq.com> Date: Tue Aug 20 20:00:31 2019 +0800 fix comment error, the code is ok commit eea1407 Author: Liao Tonglang <liaotonglang@gmail.com> Date: Fri May 31 10:16:18 2019 +0800 typo fix fix cna't to can't commit 0da553c Author: KAWACHI Takashi <tkawachi@gmail.com> Date: Wed Jul 17 00:38:16 2019 +0900 Fix typo commit 7fc8fb6 Author: Michael Prokop <mika@grml.org> Date: Tue May 28 17:58:42 2019 +0200 Typo fixes s/familar/familiar/ s/compatiblity/compatibility/ s/ ot / to / s/itsef/itself/ commit 5f46c9d Author: zhumoing <34539422+zhumoing@users.noreply.github.com> Date: Tue May 21 21:16:50 2019 +0800 typo-fixes typo-fixes commit 321dfe1 Author: wxisme <850885154@qq.com> Date: Sat Mar 16 15:10:55 2019 +0800 typo fix commit b4fb131 Merge: 267e0e6 3df1eb8 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Fri Feb 8 22:55:45 2019 +0200 Merge branch 'unstable' of antirez/redis into unstable commit 267e0e6 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Wed Jan 30 21:26:04 2019 +0200 Minor typo fix commit 30544e7 Author: inshal96 <39904558+inshal96@users.noreply.github.com> Date: Fri Jan 4 16:54:50 2019 +0500 remove an extra 'a' in the comments commit 337969d Author: BrotherGao <yangdongheng11@gmail.com> Date: Sat Dec 29 12:37:29 2018 +0800 fix typo in redis.conf commit 9f4b121 Merge: 423a030 e504583 Author: BrotherGao <yangdongheng@xiaomi.com> Date: Sat Dec 29 11:41:12 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 423a030 Merge: 42b02b7 46a51cd Author: 杨东衡 <yangdongheng@xiaomi.com> Date: Tue Dec 4 23:56:11 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 42b02b7 Merge: 68c0e6e b8febe6 Author: Dongheng Yang <yangdongheng11@gmail.com> Date: Sun Oct 28 15:54:23 2018 +0800 Merge pull request #1 from antirez/unstable update local data commit 714b589 Author: Christian <crifei93@gmail.com> Date: Fri Dec 28 01:17:26 2018 +0100 fix typo "resulution" commit e23259d Author: garenchan <1412950785@qq.com> Date: Wed Dec 26 09:58:35 2018 +0800 fix typo: segfauls -> segfault commit a9359f8 Author: xjp <jianping_xie@aliyun.com> Date: Tue Dec 18 17:31:44 2018 +0800 Fixed REDISMODULE_H spell bug commit a12c3e4 Author: jdiaz <jrd.palacios@gmail.com> Date: Sat Dec 15 23:39:52 2018 -0600 Fixes hyperloglog hash function comment block description commit 770eb11 Author: 林上耀 <1210tom@163.com> Date: Sun Nov 25 17:16:10 2018 +0800 fix typo commit fd97fbb Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Fri Nov 23 17:14:01 2018 +0100 Correct "unsupported" typo. commit a85522d Author: Jungnam Lee <jungnam.lee@oracle.com> Date: Thu Nov 8 23:01:29 2018 +0900 fix typo in test comments commit ade8007 Author: Arun Kumar <palerdot@users.noreply.github.com> Date: Tue Oct 23 16:56:35 2018 +0530 Fixed grammatical typo Fixed typo for word 'dictionary' commit 869ee39 Author: Hamid Alaei <hamid.a85@gmail.com> Date: Sun Aug 12 16:40:02 2018 +0430 fix documentations: (ThreadSafeContextStart/Stop -> ThreadSafeContextLock/Unlock), minor typo commit f89d158 Author: Mayank Jain <mayankjain255@gmail.com> Date: Tue Jul 31 23:01:21 2018 +0530 Updated README.md with some spelling corrections. Made correction in spelling of some misspelled words. commit 892198e Author: dsomeshwar <someshwar.dhayalan@gmail.com> Date: Sat Jul 21 23:23:04 2018 +0530 typo fix commit 8a4d780 Author: Itamar Haber <itamar@redislabs.com> Date: Mon Apr 30 02:06:52 2018 +0300 Fixes some typos commit e3acef6 Author: Noah Rosamilia <ivoahivoah@gmail.com> Date: Sat Mar 3 23:41:21 2018 -0500 Fix typo in /deps/README.md commit 04442fb Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:32:42 2018 +0800 Fix typo in readSyncBulkPayload() comment. commit 9f36880 Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:20:37 2018 +0800 replication.c comment: run_id -> replid. commit f866b4a Author: Francesco 'makevoid' Canessa <makevoid@gmail.com> Date: Thu Feb 22 22:01:56 2018 +0000 fix comment typo in server.c commit 0ebc69b Author: 줍 <jubee0124@gmail.com> Date: Mon Feb 12 16:38:48 2018 +0900 Fix typo in redis.conf Fix `five behaviors` to `eight behaviors` in [this sentence ](antirez/redis@unstable/redis.conf#L564) commit b50a620 Author: martinbroadhurst <martinbroadhurst@users.noreply.github.com> Date: Thu Dec 28 12:07:30 2017 +0000 Fix typo in valgrind.sup commit 7d8f349 Author: Peter Boughton <peter@sorcerersisle.com> Date: Mon Nov 27 19:52:19 2017 +0000 Update CONTRIBUTING; refer doc updates to redis-doc repo. commit 02dec7e Author: Klauswk <klauswk1@hotmail.com> Date: Tue Oct 24 16:18:38 2017 -0200 Fix typo in comment commit e1efbc8 Author: chenshi <baiwfg2@gmail.com> Date: Tue Oct 3 18:26:30 2017 +0800 Correct two spelling errors of comments commit 93327d8 Author: spacewander <spacewanderlzx@gmail.com> Date: Wed Sep 13 16:47:24 2017 +0800 Update the comment for OBJ_ENCODING_EMBSTR_SIZE_LIMIT's value The value of OBJ_ENCODING_EMBSTR_SIZE_LIMIT is 44 now instead of 39. commit 63d361f Author: spacewander <spacewanderlzx@gmail.com> Date: Tue Sep 12 15:06:42 2017 +0800 Fix <prevlen> related doc in ziplist.c According to the definition of ZIP_BIG_PREVLEN and other related code, the guard of single byte <prevlen> should be 254 instead of 255. commit ebe228d Author: hanael80 <hanael80@gmail.com> Date: Tue Aug 15 09:09:40 2017 +0900 Fix typo commit 6b696e6 Author: Matt Robenolt <matt@ydekproductions.com> Date: Mon Aug 14 14:50:47 2017 -0700 Fix typo in LATENCY DOCTOR output commit a2ec6ae Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 15 14:15:16 2017 +0800 Fix a typo: form => from commit 3ab7699 Author: caosiyang <caosiyang@qiyi.com> Date: Thu Aug 10 18:40:33 2017 +0800 Fix a typo: replicationFeedSlavesFromMaster() => replicationFeedSlavesFromMasterStream() commit 72d43ef Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 8 15:57:25 2017 +0800 fix a typo: servewr => server commit 707c958 Author: Bo Cai <charpty@gmail.com> Date: Wed Jul 26 21:49:42 2017 +0800 redis-cli.c typo: conut -> count. Signed-off-by: Bo Cai <charpty@gmail.com> commit b9385b2 Author: JackDrogon <jack.xsuperman@gmail.com> Date: Fri Jun 30 14:22:31 2017 +0800 Fix some spell problems commit 20d9230 Author: akosel <aaronjkosel@gmail.com> Date: Sun Jun 4 19:35:13 2017 -0500 Fix typo commit b167bfc Author: Krzysiek Witkowicz <krzysiekwitkowicz@gmail.com> Date: Mon May 22 21:32:27 2017 +0100 Fix #4008 small typo in comment commit 2b78ac8 Author: Jake Clarkson <jacobwclarkson@gmail.com> Date: Wed Apr 26 15:49:50 2017 +0100 Correct typo in tests/unit/hyperloglog.tcl commit b0f1cdb Author: Qi Luo <qiluo-msft@users.noreply.github.com> Date: Wed Apr 19 14:25:18 2017 -0700 Fix typo commit a90b0f9 Author: charsyam <charsyam@naver.com> Date: Thu Mar 16 18:19:53 2017 +0900 fix typos fix typos fix typos commit 8430a79 Author: Richard Hart <richardhart92@gmail.com> Date: Mon Mar 13 22:17:41 2017 -0400 Fixed log message typo in listenToPort. commit 481a1c2 Author: Vinod Kumar <kumar003vinod@gmail.com> Date: Sun Jan 15 23:04:51 2017 +0530 src/db.c: Correct "save" -> "safe" typo commit 586b4d3 Author: wangshaonan <wshn13@gmail.com> Date: Wed Dec 21 20:28:27 2016 +0800 Fix typo they->the in helloworld.c commit c1c4b5e Author: Jenner <hypxm@qq.com> Date: Mon Dec 19 16:39:46 2016 +0800 typo error commit 1ee1a3f Author: tielei <43289893@qq.com> Date: Mon Jul 18 13:52:25 2016 +0800 fix some comments commit 11a41fb Author: Otto Kekäläinen <otto@seravo.fi> Date: Sun Jul 3 10:23:55 2016 +0100 Fix spelling in documentation and comments commit 5fb5d82 Author: francischan <f1ancis621@gmail.com> Date: Tue Jun 28 00:19:33 2016 +0800 Fix outdated comments about redis.c file. It should now refer to server.c file. commit 6b254bc Author: lmatt-bit <lmatt123n@gmail.com> Date: Thu Apr 21 21:45:58 2016 +0800 Refine the comment of dictRehashMilliseconds func SLAVECONF->REPLCONF in comment - by andyli029 commit ee9869f Author: clark.kang <charsyam@naver.com> Date: Tue Mar 22 11:09:51 2016 +0900 fix typos commit f7b3b11 Author: Harisankar H <harisankarh@gmail.com> Date: Wed Mar 9 11:49:42 2016 +0530 Typo correction: "faield" --> "failed" Typo correction: "faield" --> "failed" commit 3fd40fc Author: Itamar Haber <itamar@redislabs.com> Date: Thu Feb 25 10:31:51 2016 +0200 Fixes a typo in comments commit 621c160 Author: Prayag Verma <prayag.verma@gmail.com> Date: Mon Feb 1 12:36:20 2016 +0530 Fix typo in Readme.md Spelling mistakes - `eviciton` > `eviction` `familar` > `familiar` commit d7d07d6 Author: WonCheol Lee <toctoc21c@gmail.com> Date: Wed Dec 30 15:11:34 2015 +0900 Typo fixed commit a4dade7 Author: Felix Bünemann <buenemann@louis.info> Date: Mon Dec 28 11:02:55 2015 +0100 [ci skip] Improve supervised upstart config docs This mentions that "expect stop" is required for supervised upstart to work correctly. See http://upstart.ubuntu.com/cookbook/#expect-stop for an explanation. commit d9caba9 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:30:03 2015 +1100 README: Remove trailing whitespace commit 72d42e5 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:32 2015 +1100 README: Fix typo. th => the commit dd6e957 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:20 2015 +1100 README: Fix typo. familar => familiar commit 3a12b23 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:28:54 2015 +1100 README: Fix typo. eviciton => eviction commit 2d1d03b Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:21:45 2015 +1100 README: Fix typo. sever => server commit 3973b06 Author: Itamar Haber <itamar@garantiadata.com> Date: Sat Dec 19 17:01:20 2015 +0200 Typo fix commit 4f2e460 Author: Steve Gao <fu@2token.com> Date: Fri Dec 4 10:22:05 2015 +0800 Update README - fix typos commit b21667c Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:48:37 2015 +0800 delete redundancy color judge in sdscatcolor commit 88894c7 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:14:42 2015 +0800 the example output shoule be HelloWorld commit 2763470 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 17:41:39 2015 +0800 modify error word keyevente Signed-off-by: binyan <binbin.yan@nokia.com> commit 0847b3d Author: Bruno Martins <bscmartins@gmail.com> Date: Wed Nov 4 11:37:01 2015 +0000 typo commit bbb9e9e Author: dawedawe <dawedawe@gmx.de> Date: Fri Mar 27 00:46:41 2015 +0100 typo: zimap -> zipmap commit 5ed297e Author: Axel Advento <badwolf.bloodseeker.rev@gmail.com> Date: Tue Mar 3 15:58:29 2015 +0800 Fix 'salve' typos to 'slave' commit edec9d6 Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Wed Jun 12 14:12:47 2019 +0200 Update README.md Co-Authored-By: Qix <Qix-@users.noreply.github.com> commit 692a7af Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Tue May 28 14:32:04 2019 +0200 grammar commit d962b0a Author: Nick Frost <nickfrostatx@gmail.com> Date: Wed Jul 20 15:17:12 2016 -0700 Minor grammar fix commit 24fff01aaccaf5956973ada8c50ceb1462e211c6 (typos) Author: Chad Miller <chadm@squareup.com> Date: Tue Sep 8 13:46:11 2020 -0400 Fix faulty comment about operation of unlink() commit 3cd5c1f3326c52aa552ada7ec797c6bb16452355 Author: Kevin <kevin.xgr@gmail.com> Date: Wed Nov 20 00:13:50 2019 +0800 Fix typo in server.c. From a83af59 Mon Sep 17 00:00:00 2001 From: wuwo <wuwo@wacai.com> Date: Fri, 17 Mar 2017 20:37:45 +0800 Subject: [PATCH] falure to failure From c961896 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=B7=A6=E6=87=B6?= <veficos@gmail.com> Date: Sat, 27 May 2017 15:33:04 +0800 Subject: [PATCH] fix typo From e600ef2 Mon Sep 17 00:00:00 2001 From: "rui.zou" <rui.zou@yunify.com> Date: Sat, 30 Sep 2017 12:38:15 +0800 Subject: [PATCH] fix a typo From c7d07fa Mon Sep 17 00:00:00 2001 From: Alexandre Perrin <alex@kaworu.ch> Date: Thu, 16 Aug 2018 10:35:31 +0200 Subject: [PATCH] deps README.md typo From b25cb67 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 10:55:37 +0300 Subject: [PATCH 1/2] fix typos in header From ad28ca6 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 11:02:36 +0300 Subject: [PATCH 2/2] fix typos commit 34924cdedd8552466fc22c1168d49236cb7ee915 Author: Adrian Lynch <adi_ady_ade@hotmail.com> Date: Sat Apr 4 21:59:15 2015 +0100 Typos fixed commit fd2a1e7 Author: Jan <jsteemann@users.noreply.github.com> Date: Sat Oct 27 19:13:01 2018 +0200 Fix typos Fix typos commit e14e47c1a234b53b0e103c5f6a1c61481cbcbb02 Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:30:07 2019 -0500 Fix multiple misspellings of "following" commit 79b948ce2dac6b453fe80995abbcaac04c213d5a Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:24:28 2019 -0500 Fix misspelling of create-cluster commit 1fffde52666dc99ab35efbd31071a4c008cb5a71 Author: Andy Lester <andy@petdance.com> Date: Wed Jul 31 17:57:56 2019 -0500 Fix typos commit 204c9ba9651e9e05fd73936b452b9a30be456cfe Author: Xiaobo Zhu <xiaobo.zhu@shopee.com> Date: Tue Aug 13 22:19:25 2019 +0800 fix typos Squashed commit of the following: commit 1d9aaf8 Author: danmedani <danmedani@gmail.com> Date: Sun Aug 2 11:40:26 2015 -0700 README typo fix. Squashed commit of the following: commit 32bfa7c Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Jul 6 21:15:08 2015 +0200 Fixed grammer Squashed commit of the following: commit b24f69c Author: Sisir Koppaka <sisir.koppaka@gmail.com> Date: Mon Mar 2 22:38:45 2015 -0500 utils/hashtable/rehashing.c: Fix typos Squashed commit of the following: commit 4e04082 Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Mar 23 08:22:21 2015 +0000 Small config file documentation improvements Squashed commit of the following: commit acb8773 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:52:48 2015 -0700 Typo and grammar fixes in readme commit 2eb75b6 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:36:18 2015 -0700 fixed redis.conf comment Squashed commit of the following: commit a8249a2 Author: Masahiko Sawada <sawada.mshk@gmail.com> Date: Fri Dec 11 11:39:52 2015 +0530 Revise correction of typos. Squashed commit of the following: commit 3c02028 Author: zhaojun11 <zhaojun11@jd.com> Date: Wed Jan 17 19:05:28 2018 +0800 Fix typos include two code typos in cluster.c and latency.c Squashed commit of the following: commit 9dba47c Author: q191201771 <191201771@qq.com> Date: Sat Jan 4 11:31:04 2020 +0800 fix function listCreate comment in adlist.c Update src/server.c commit 2c7c2cb536e78dd211b1ac6f7bda00f0f54faaeb Author: charpty <charpty@gmail.com> Date: Tue May 1 23:16:59 2018 +0800 server.c typo: modules system dictionary type comment Signed-off-by: charpty <charpty@gmail.com> commit a8395323fb63cb59cb3591cb0f0c8edb7c29a680 Author: Itamar Haber <itamar@redislabs.com> Date: Sun May 6 00:25:18 2018 +0300 Updates test_helper.tcl's help with undocumented options Specifically: * Host * Port * Client commit bde6f9ced15755cd6407b4af7d601b030f36d60b Author: wxisme <850885154@qq.com> Date: Wed Aug 8 15:19:19 2018 +0800 fix comments in deps files commit 3172474ba991532ab799ee1873439f3402412331 Author: wxisme <850885154@qq.com> Date: Wed Aug 8 14:33:49 2018 +0800 fix some comments commit 01b6f2b6858b5cf2ce4ad5092d2c746e755f53f0 Author: Thor Juhasz <thor@juhasz.pro> Date: Sun Nov 18 14:37:41 2018 +0100 Minor fixes to comments Found some parts a little unclear on a first read, which prompted me to have a better look at the file and fix some minor things I noticed. Fixing minor typos and grammar. There are no changes to configuration options. These changes are only meant to help the user better understand the explanations to the various configuration options
2020-09-10 06:43:38 -04:00
test {EXPIRE precision is now the millisecond} {
# This test is very likely to do a false positive if the
# server is under pressure, so if it does not work give it a few more
# chances.
for {set j 0} {$j < 30} {incr j} {
r del x
r setex x 1 somevalue
after 800
set a [r get x]
if {$a ne {somevalue}} continue
after 300
set b [r get x]
if {$b eq {}} break
}
if {$::verbose} {
puts "millisecond expire test attempts: $j"
}
assert_equal $a {somevalue}
assert_equal $b {}
}
test "PSETEX can set sub-second expires" {
# This test is very likely to do a false positive if the server is
# under pressure, so if it does not work give it a few more chances.
for {set j 0} {$j < 50} {incr j} {
Improve test suite to handle external servers better. (#9033) This commit revives the improves the ability to run the test suite against external servers, instead of launching and managing `redis-server` processes as part of the test fixture. This capability existed in the past, using the `--host` and `--port` options. However, it was quite limited and mostly useful when running a specific tests. Attempting to run larger chunks of the test suite experienced many issues: * Many tests depend on being able to start and control `redis-server` themselves, and there's no clear distinction between external server compatible and other tests. * Cluster mode is not supported (resulting with `CROSSSLOT` errors). This PR cleans up many things and makes it possible to run the entire test suite against an external server. It also provides more fine grained controls to handle cases where the external server supports a subset of the Redis commands, limited number of databases, cluster mode, etc. The tests directory now contains a `README.md` file that describes how this works. This commit also includes additional cleanups and fixes: * Tests can now be tagged. * Tag-based selection is now unified across `start_server`, `tags` and `test`. * More information is provided about skipped or ignored tests. * Repeated patterns in tests have been extracted to common procedures, both at a global level and on a per-test file basis. * Cleaned up some cases where test setup was based on a previous test executing (a major anti-pattern that repeats itself in many places). * Cleaned up some cases where test teardown was not part of a test (in the future we should have dedicated teardown code that executes even when tests fail). * Fixed some tests that were flaky running on external servers.
2021-06-09 08:13:24 -04:00
r del x
r psetex x 100 somevalue
set a [r get x]
after 101
set b [r get x]
if {$a eq {somevalue} && $b eq {}} break
}
if {$::verbose} { puts "PSETEX sub-second expire test attempts: $j" }
list $a $b
} {somevalue {}}
test "PEXPIRE can set sub-second expires" {
# This test is very likely to do a false positive if the server is
# under pressure, so if it does not work give it a few more chances.
for {set j 0} {$j < 50} {incr j} {
r set x somevalue
r pexpire x 100
set c [r get x]
after 101
set d [r get x]
if {$c eq {somevalue} && $d eq {}} break
}
if {$::verbose} { puts "PEXPIRE sub-second expire test attempts: $j" }
list $c $d
} {somevalue {}}
test "PEXPIREAT can set sub-second expires" {
# This test is very likely to do a false positive if the server is
# under pressure, so if it does not work give it a few more chances.
for {set j 0} {$j < 50} {incr j} {
r set x somevalue
set now [r time]
r pexpireat x [expr ([lindex $now 0]*1000)+([lindex $now 1]/1000)+200]
set e [r get x]
after 201
set f [r get x]
if {$e eq {somevalue} && $f eq {}} break
}
if {$::verbose} { puts "PEXPIREAT sub-second expire test attempts: $j" }
list $e $f
} {somevalue {}}
2018-06-21 10:08:09 -04:00
test {TTL returns time to live in seconds} {
r del x
r setex x 10 somevalue
set ttl [r ttl x]
assert {$ttl > 8 && $ttl <= 10}
}
test {PTTL returns time to live in milliseconds} {
r del x
r setex x 1 somevalue
set ttl [r pttl x]
assert {$ttl > 500 && $ttl <= 1000}
}
test {TTL / PTTL / EXPIRETIME / PEXPIRETIME return -1 if key has no expire} {
r del x
r set x hello
list [r ttl x] [r pttl x] [r expiretime x] [r pexpiretime x]
} {-1 -1 -1 -1}
test {TTL / PTTL / EXPIRETIME / PEXPIRETIME return -2 if key does not exit} {
r del x
list [r ttl x] [r pttl x] [r expiretime x] [r pexpiretime x]
} {-2 -2 -2 -2}
test {EXPIRETIME returns absolute expiration time in seconds} {
r del x
set abs_expire [expr [clock seconds] + 100]
r set x somevalue exat $abs_expire
assert_equal [r expiretime x] $abs_expire
}
test {PEXPIRETIME returns absolute expiration time in milliseconds} {
r del x
set abs_expire [expr [clock milliseconds] + 100000]
r set x somevalue pxat $abs_expire
assert_equal [r pexpiretime x] $abs_expire
}
test {Redict should actively expire keys incrementally} {
r flushdb
r psetex key1 500 a
r psetex key2 500 a
r psetex key3 500 a
Improve test suite to handle external servers better. (#9033) This commit revives the improves the ability to run the test suite against external servers, instead of launching and managing `redis-server` processes as part of the test fixture. This capability existed in the past, using the `--host` and `--port` options. However, it was quite limited and mostly useful when running a specific tests. Attempting to run larger chunks of the test suite experienced many issues: * Many tests depend on being able to start and control `redis-server` themselves, and there's no clear distinction between external server compatible and other tests. * Cluster mode is not supported (resulting with `CROSSSLOT` errors). This PR cleans up many things and makes it possible to run the entire test suite against an external server. It also provides more fine grained controls to handle cases where the external server supports a subset of the Redis commands, limited number of databases, cluster mode, etc. The tests directory now contains a `README.md` file that describes how this works. This commit also includes additional cleanups and fixes: * Tests can now be tagged. * Tag-based selection is now unified across `start_server`, `tags` and `test`. * More information is provided about skipped or ignored tests. * Repeated patterns in tests have been extracted to common procedures, both at a global level and on a per-test file basis. * Cleaned up some cases where test setup was based on a previous test executing (a major anti-pattern that repeats itself in many places). * Cleaned up some cases where test teardown was not part of a test (in the future we should have dedicated teardown code that executes even when tests fail). * Fixed some tests that were flaky running on external servers.
2021-06-09 08:13:24 -04:00
assert_equal 3 [r dbsize]
# Redict expires random keys ten times every second so we are
# fairly sure that all the three keys should be evicted after
Improve test suite to handle external servers better. (#9033) This commit revives the improves the ability to run the test suite against external servers, instead of launching and managing `redis-server` processes as part of the test fixture. This capability existed in the past, using the `--host` and `--port` options. However, it was quite limited and mostly useful when running a specific tests. Attempting to run larger chunks of the test suite experienced many issues: * Many tests depend on being able to start and control `redis-server` themselves, and there's no clear distinction between external server compatible and other tests. * Cluster mode is not supported (resulting with `CROSSSLOT` errors). This PR cleans up many things and makes it possible to run the entire test suite against an external server. It also provides more fine grained controls to handle cases where the external server supports a subset of the Redis commands, limited number of databases, cluster mode, etc. The tests directory now contains a `README.md` file that describes how this works. This commit also includes additional cleanups and fixes: * Tests can now be tagged. * Tag-based selection is now unified across `start_server`, `tags` and `test`. * More information is provided about skipped or ignored tests. * Repeated patterns in tests have been extracted to common procedures, both at a global level and on a per-test file basis. * Cleaned up some cases where test setup was based on a previous test executing (a major anti-pattern that repeats itself in many places). * Cleaned up some cases where test teardown was not part of a test (in the future we should have dedicated teardown code that executes even when tests fail). * Fixed some tests that were flaky running on external servers.
2021-06-09 08:13:24 -04:00
# two seconds.
wait_for_condition 20 100 {
[r dbsize] eq 0
Replace cluster metadata with slot specific dictionaries (#11695) This is an implementation of https://github.com/redis/redis/issues/10589 that eliminates 16 bytes per entry in cluster mode, that are currently used to create a linked list between entries in the same slot. Main idea is splitting main dictionary into 16k smaller dictionaries (one per slot), so we can perform all slot specific operations, such as iteration, without any additional info in the `dictEntry`. For Redis cluster, the expectation is that there will be a larger number of keys, so the fixed overhead of 16k dictionaries will be The expire dictionary is also split up so that each slot is logically decoupled, so that in subsequent revisions we will be able to atomically flush a slot of data. ## Important changes * Incremental rehashing - one big change here is that it's not one, but rather up to 16k dictionaries that can be rehashing at the same time, in order to keep track of them, we introduce a separate queue for dictionaries that are rehashing. Also instead of rehashing a single dictionary, cron job will now try to rehash as many as it can in 1ms. * getRandomKey - now needs to not only select a random key, from the random bucket, but also needs to select a random dictionary. Fairness is a major concern here, as it's possible that keys can be unevenly distributed across the slots. In order to address this search we introduced binary index tree). With that data structure we are able to efficiently find a random slot using binary search in O(log^2(slot count)) time. * Iteration efficiency - when iterating dictionary with a lot of empty slots, we want to skip them efficiently. We can do this using same binary index that is used for random key selection, this index allows us to find a slot for a specific key index. For example if there are 10 keys in the slot 0, then we can quickly find a slot that contains 11th key using binary search on top of the binary index tree. * scan API - in order to perform a scan across the entire DB, the cursor now needs to not only save position within the dictionary but also the slot id. In this change we append slot id into LSB of the cursor so it can be passed around between client and the server. This has interesting side effect, now you'll be able to start scanning specific slot by simply providing slot id as a cursor value. The plan is to not document this as defined behavior, however. It's also worth nothing the SCAN API is now technically incompatible with previous versions, although practically we don't believe it's an issue. * Checksum calculation optimizations - During command execution, we know that all of the keys are from the same slot (outside of a few notable exceptions such as cross slot scripts and modules). We don't want to compute the checksum multiple multiple times, hence we are relying on cached slot id in the client during the command executions. All operations that access random keys, either should pass in the known slot or recompute the slot. * Slot info in RDB - in order to resize individual dictionaries correctly, while loading RDB, it's not enough to know total number of keys (of course we could approximate number of keys per slot, but it won't be precise). To address this issue, we've added additional metadata into RDB that contains number of keys in each slot, which can be used as a hint during loading. * DB size - besides `DBSIZE` API, we need to know size of the DB in many places want, in order to avoid scanning all dictionaries and summing up their sizes in a loop, we've introduced a new field into `redisDb` that keeps track of `key_count`. This way we can keep DBSIZE operation O(1). This is also kept for O(1) expires computation as well. ## Performance This change improves SET performance in cluster mode by ~5%, most of the gains come from us not having to maintain linked lists for keys in slot, non-cluster mode has same performance. For workloads that rely on evictions, the performance is similar because of the extra overhead for finding keys to evict. RDB loading performance is slightly reduced, as the slot of each key needs to be computed during the load. ## Interface changes * Removed `overhead.hashtable.slot-to-keys` to `MEMORY STATS` * Scan API will now require 64 bits to store the cursor, even on 32 bit systems, as the slot information will be stored. * New RDB version to support the new op code for SLOT information. --------- Co-authored-by: Vitaly Arbuzov <arvit@amazon.com> Co-authored-by: Harkrishn Patro <harkrisp@amazon.com> Co-authored-by: Roshan Khatri <rvkhatri@amazon.com> Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2023-10-15 02:58:26 -04:00
} else {
fail "Keys did not actively expire."
Improve test suite to handle external servers better. (#9033) This commit revives the improves the ability to run the test suite against external servers, instead of launching and managing `redis-server` processes as part of the test fixture. This capability existed in the past, using the `--host` and `--port` options. However, it was quite limited and mostly useful when running a specific tests. Attempting to run larger chunks of the test suite experienced many issues: * Many tests depend on being able to start and control `redis-server` themselves, and there's no clear distinction between external server compatible and other tests. * Cluster mode is not supported (resulting with `CROSSSLOT` errors). This PR cleans up many things and makes it possible to run the entire test suite against an external server. It also provides more fine grained controls to handle cases where the external server supports a subset of the Redis commands, limited number of databases, cluster mode, etc. The tests directory now contains a `README.md` file that describes how this works. This commit also includes additional cleanups and fixes: * Tests can now be tagged. * Tag-based selection is now unified across `start_server`, `tags` and `test`. * More information is provided about skipped or ignored tests. * Repeated patterns in tests have been extracted to common procedures, both at a global level and on a per-test file basis. * Cleaned up some cases where test setup was based on a previous test executing (a major anti-pattern that repeats itself in many places). * Cleaned up some cases where test teardown was not part of a test (in the future we should have dedicated teardown code that executes even when tests fail). * Fixed some tests that were flaky running on external servers.
2021-06-09 08:13:24 -04:00
}
}
test {Redict should lazy expire keys} {
2013-03-28 06:36:49 -04:00
r flushdb
r debug set-active-expire 0
Improve test suite to handle external servers better. (#9033) This commit revives the improves the ability to run the test suite against external servers, instead of launching and managing `redis-server` processes as part of the test fixture. This capability existed in the past, using the `--host` and `--port` options. However, it was quite limited and mostly useful when running a specific tests. Attempting to run larger chunks of the test suite experienced many issues: * Many tests depend on being able to start and control `redis-server` themselves, and there's no clear distinction between external server compatible and other tests. * Cluster mode is not supported (resulting with `CROSSSLOT` errors). This PR cleans up many things and makes it possible to run the entire test suite against an external server. It also provides more fine grained controls to handle cases where the external server supports a subset of the Redis commands, limited number of databases, cluster mode, etc. The tests directory now contains a `README.md` file that describes how this works. This commit also includes additional cleanups and fixes: * Tests can now be tagged. * Tag-based selection is now unified across `start_server`, `tags` and `test`. * More information is provided about skipped or ignored tests. * Repeated patterns in tests have been extracted to common procedures, both at a global level and on a per-test file basis. * Cleaned up some cases where test setup was based on a previous test executing (a major anti-pattern that repeats itself in many places). * Cleaned up some cases where test teardown was not part of a test (in the future we should have dedicated teardown code that executes even when tests fail). * Fixed some tests that were flaky running on external servers.
2021-06-09 08:13:24 -04:00
r psetex key1{t} 500 a
r psetex key2{t} 500 a
r psetex key3{t} 500 a
2013-03-28 06:36:49 -04:00
set size1 [r dbsize]
# Redict expires random keys ten times every second so we are
2013-03-28 06:36:49 -04:00
# fairly sure that all the three keys should be evicted after
# one second.
after 1000
set size2 [r dbsize]
Improve test suite to handle external servers better. (#9033) This commit revives the improves the ability to run the test suite against external servers, instead of launching and managing `redis-server` processes as part of the test fixture. This capability existed in the past, using the `--host` and `--port` options. However, it was quite limited and mostly useful when running a specific tests. Attempting to run larger chunks of the test suite experienced many issues: * Many tests depend on being able to start and control `redis-server` themselves, and there's no clear distinction between external server compatible and other tests. * Cluster mode is not supported (resulting with `CROSSSLOT` errors). This PR cleans up many things and makes it possible to run the entire test suite against an external server. It also provides more fine grained controls to handle cases where the external server supports a subset of the Redis commands, limited number of databases, cluster mode, etc. The tests directory now contains a `README.md` file that describes how this works. This commit also includes additional cleanups and fixes: * Tests can now be tagged. * Tag-based selection is now unified across `start_server`, `tags` and `test`. * More information is provided about skipped or ignored tests. * Repeated patterns in tests have been extracted to common procedures, both at a global level and on a per-test file basis. * Cleaned up some cases where test setup was based on a previous test executing (a major anti-pattern that repeats itself in many places). * Cleaned up some cases where test teardown was not part of a test (in the future we should have dedicated teardown code that executes even when tests fail). * Fixed some tests that were flaky running on external servers.
2021-06-09 08:13:24 -04:00
r mget key1{t} key2{t} key3{t}
2013-03-28 06:36:49 -04:00
set size3 [r dbsize]
r debug set-active-expire 1
list $size1 $size2 $size3
Improve test suite to handle external servers better. (#9033) This commit revives the improves the ability to run the test suite against external servers, instead of launching and managing `redis-server` processes as part of the test fixture. This capability existed in the past, using the `--host` and `--port` options. However, it was quite limited and mostly useful when running a specific tests. Attempting to run larger chunks of the test suite experienced many issues: * Many tests depend on being able to start and control `redis-server` themselves, and there's no clear distinction between external server compatible and other tests. * Cluster mode is not supported (resulting with `CROSSSLOT` errors). This PR cleans up many things and makes it possible to run the entire test suite against an external server. It also provides more fine grained controls to handle cases where the external server supports a subset of the Redis commands, limited number of databases, cluster mode, etc. The tests directory now contains a `README.md` file that describes how this works. This commit also includes additional cleanups and fixes: * Tests can now be tagged. * Tag-based selection is now unified across `start_server`, `tags` and `test`. * More information is provided about skipped or ignored tests. * Repeated patterns in tests have been extracted to common procedures, both at a global level and on a per-test file basis. * Cleaned up some cases where test setup was based on a previous test executing (a major anti-pattern that repeats itself in many places). * Cleaned up some cases where test teardown was not part of a test (in the future we should have dedicated teardown code that executes even when tests fail). * Fixed some tests that were flaky running on external servers.
2021-06-09 08:13:24 -04:00
} {3 3 0} {needs:debug}
2013-03-28 06:36:49 -04:00
2013-03-28 06:46:14 -04:00
test {EXPIRE should not resurrect keys (issue #1026)} {
r debug set-active-expire 0
r set foo bar
r pexpire foo 500
after 1000
r expire foo 10
r debug set-active-expire 1
r exists foo
Improve test suite to handle external servers better. (#9033) This commit revives the improves the ability to run the test suite against external servers, instead of launching and managing `redis-server` processes as part of the test fixture. This capability existed in the past, using the `--host` and `--port` options. However, it was quite limited and mostly useful when running a specific tests. Attempting to run larger chunks of the test suite experienced many issues: * Many tests depend on being able to start and control `redis-server` themselves, and there's no clear distinction between external server compatible and other tests. * Cluster mode is not supported (resulting with `CROSSSLOT` errors). This PR cleans up many things and makes it possible to run the entire test suite against an external server. It also provides more fine grained controls to handle cases where the external server supports a subset of the Redis commands, limited number of databases, cluster mode, etc. The tests directory now contains a `README.md` file that describes how this works. This commit also includes additional cleanups and fixes: * Tests can now be tagged. * Tag-based selection is now unified across `start_server`, `tags` and `test`. * More information is provided about skipped or ignored tests. * Repeated patterns in tests have been extracted to common procedures, both at a global level and on a per-test file basis. * Cleaned up some cases where test setup was based on a previous test executing (a major anti-pattern that repeats itself in many places). * Cleaned up some cases where test teardown was not part of a test (in the future we should have dedicated teardown code that executes even when tests fail). * Fixed some tests that were flaky running on external servers.
2021-06-09 08:13:24 -04:00
} {0} {needs:debug}
2013-03-28 06:46:14 -04:00
test {5 keys in, 5 keys out} {
r flushdb
r set a c
r expire a 5
r set t c
r set e c
r set s c
r set foo b
assert_equal [lsort [r keys *]] {a e foo s t}
r del a ; # Do not leak volatile keys to other tests
}
2016-07-06 05:50:13 -04:00
test {EXPIRE with empty string as TTL should report an error} {
r set foo bar
catch {r expire foo ""} e
set e
} {*not an integer*}
test {SET with EX with big integer should report an error} {
catch {r set foo bar EX 10000000000000000} e
set e
} {ERR invalid expire time in 'set' command}
test {SET with EX with smallest integer should report an error} {
catch {r SET foo bar EX -9999999999999999} e
set e
} {ERR invalid expire time in 'set' command}
test {GETEX with big integer should report an error} {
r set foo bar
catch {r GETEX foo EX 10000000000000000} e
set e
} {ERR invalid expire time in 'getex' command}
test {GETEX with smallest integer should report an error} {
r set foo bar
catch {r GETEX foo EX -9999999999999999} e
set e
} {ERR invalid expire time in 'getex' command}
test {EXPIRE with big integer overflows when converted to milliseconds} {
r set foo bar
# Hit `when > LLONG_MAX - basetime`
assert_error "ERR invalid expire time in 'expire' command" {r EXPIRE foo 9223370399119966}
# Hit `when > LLONG_MAX / 1000`
assert_error "ERR invalid expire time in 'expire' command" {r EXPIRE foo 9223372036854776}
assert_error "ERR invalid expire time in 'expire' command" {r EXPIRE foo 10000000000000000}
assert_error "ERR invalid expire time in 'expire' command" {r EXPIRE foo 18446744073709561}
assert_equal {-1} [r ttl foo]
}
test {PEXPIRE with big integer overflow when basetime is added} {
r set foo bar
catch {r PEXPIRE foo 9223372036854770000} e
set e
} {ERR invalid expire time in 'pexpire' command}
test {EXPIRE with big negative integer} {
r set foo bar
# Hit `when < LLONG_MIN / 1000`
assert_error "ERR invalid expire time in 'expire' command" {r EXPIRE foo -9223372036854776}
assert_error "ERR invalid expire time in 'expire' command" {r EXPIRE foo -9999999999999999}
r ttl foo
} {-1}
test {PEXPIREAT with big integer works} {
r set foo bar
r PEXPIREAT foo 9223372036854770000
} {1}
test {PEXPIREAT with big negative integer works} {
r set foo bar
r PEXPIREAT foo -9223372036854770000
r ttl foo
} {-2}
# Start a new server with empty data and AOF file.
Implement Multi Part AOF mechanism to avoid AOFRW overheads. (#9788) Implement Multi-Part AOF mechanism to avoid overheads during AOFRW. Introducing a folder with multiple AOF files tracked by a manifest file. The main issues with the the original AOFRW mechanism are: * buffering of commands that are processed during rewrite (consuming a lot of RAM) * freezes of the main process when the AOFRW completes to drain the remaining part of the buffer and fsync it. * double disk IO for the data that arrives during AOFRW (had to be written to both the old and new AOF files) The main modifications of this PR: 1. Remove the AOF rewrite buffer and related code. 2. Divide the AOF into multiple files, they are classified as two types, one is the the `BASE` type, it represents the full amount of data (Maybe AOF or RDB format) after each AOFRW, there is only one `BASE` file at most. The second is `INCR` type, may have more than one. They represent the incremental commands since the last AOFRW. 3. Use a AOF manifest file to record and manage these AOF files mentioned above. 4. The original configuration of `appendfilename` will be the base part of the new file name, for example: `appendonly.aof.1.base.rdb` and `appendonly.aof.2.incr.aof` 5. Add manifest-related TCL tests, and modified some existing tests that depend on the `appendfilename` 6. Remove the `aof_rewrite_buffer_length` field in info. 7. Add `aof-disable-auto-gc` configuration. By default we're automatically deleting HISTORY type AOFs. It also gives users the opportunity to preserve the history AOFs. just for testing use now. 8. Add AOFRW limiting measure. When the AOFRW failures reaches the threshold (3 times now), we will delay the execution of the next AOFRW by 1 minute. If the next AOFRW also fails, it will be delayed by 2 minutes. The next is 4, 8, 16, the maximum delay is 60 minutes (1 hour). During the limit period, we can still use the 'bgrewriteaof' command to execute AOFRW immediately. 9. Support upgrade (load) data from old version redis. 10. Add `appenddirname` configuration, as the directory name of the append only files. All AOF files and manifest file will be placed in this directory. 11. Only the last AOF file (BASE or INCR) can be truncated. Otherwise redis will exit even if `aof-load-truncated` is enabled. Co-authored-by: Oran Agra <oran@redislabs.com>
2022-01-03 12:14:13 -05:00
start_server {overrides {appendonly {yes} appendfsync always} tags {external:skip}} {
test {All time-to-live(TTL) in commands are propagated as absolute timestamp in milliseconds in AOF} {
# This test makes sure that expire times are propagated as absolute
# times to the AOF file and not as relative time, so that when the AOF
# is reloaded the TTLs are not being shifted forward to the future.
# We want the time to logically pass when the server is restarted!
Implement Multi Part AOF mechanism to avoid AOFRW overheads. (#9788) Implement Multi-Part AOF mechanism to avoid overheads during AOFRW. Introducing a folder with multiple AOF files tracked by a manifest file. The main issues with the the original AOFRW mechanism are: * buffering of commands that are processed during rewrite (consuming a lot of RAM) * freezes of the main process when the AOFRW completes to drain the remaining part of the buffer and fsync it. * double disk IO for the data that arrives during AOFRW (had to be written to both the old and new AOF files) The main modifications of this PR: 1. Remove the AOF rewrite buffer and related code. 2. Divide the AOF into multiple files, they are classified as two types, one is the the `BASE` type, it represents the full amount of data (Maybe AOF or RDB format) after each AOFRW, there is only one `BASE` file at most. The second is `INCR` type, may have more than one. They represent the incremental commands since the last AOFRW. 3. Use a AOF manifest file to record and manage these AOF files mentioned above. 4. The original configuration of `appendfilename` will be the base part of the new file name, for example: `appendonly.aof.1.base.rdb` and `appendonly.aof.2.incr.aof` 5. Add manifest-related TCL tests, and modified some existing tests that depend on the `appendfilename` 6. Remove the `aof_rewrite_buffer_length` field in info. 7. Add `aof-disable-auto-gc` configuration. By default we're automatically deleting HISTORY type AOFs. It also gives users the opportunity to preserve the history AOFs. just for testing use now. 8. Add AOFRW limiting measure. When the AOFRW failures reaches the threshold (3 times now), we will delay the execution of the next AOFRW by 1 minute. If the next AOFRW also fails, it will be delayed by 2 minutes. The next is 4, 8, 16, the maximum delay is 60 minutes (1 hour). During the limit period, we can still use the 'bgrewriteaof' command to execute AOFRW immediately. 9. Support upgrade (load) data from old version redis. 10. Add `appenddirname` configuration, as the directory name of the append only files. All AOF files and manifest file will be placed in this directory. 11. Only the last AOF file (BASE or INCR) can be truncated. Otherwise redis will exit even if `aof-load-truncated` is enabled. Co-authored-by: Oran Agra <oran@redislabs.com>
2022-01-03 12:14:13 -05:00
set aof [get_last_incr_aof_path r]
# Apply each TTL-related command to a unique key
# SET commands
r set foo1 bar ex 100
r set foo2 bar px 100000
r set foo3 bar exat [expr [clock seconds]+100]
r set foo4 bar PXAT [expr [clock milliseconds]+100000]
r setex foo5 100 bar
r psetex foo6 100000 bar
# EXPIRE-family commands
r set foo7 bar
r expire foo7 100
r set foo8 bar
r pexpire foo8 100000
r set foo9 bar
r expireat foo9 [expr [clock seconds]+100]
r set foo10 bar
r pexpireat foo10 [expr [clock seconds]*1000+100000]
r set foo11 bar
r expireat foo11 [expr [clock seconds]-100]
# GETEX commands
r set foo12 bar
r getex foo12 ex 100
r set foo13 bar
r getex foo13 px 100000
r set foo14 bar
r getex foo14 exat [expr [clock seconds]+100]
r set foo15 bar
r getex foo15 pxat [expr [clock milliseconds]+100000]
# RESTORE commands
r set foo16 bar
set encoded [r dump foo16]
r restore foo17 100000 $encoded
r restore foo18 [expr [clock milliseconds]+100000] $encoded absttl
# Assert that each TTL-related command are persisted with absolute timestamps in AOF
assert_aof_content $aof {
{select *}
{set foo1 bar PXAT *}
{set foo2 bar PXAT *}
{set foo3 bar PXAT *}
{set foo4 bar PXAT *}
{set foo5 bar PXAT *}
{set foo6 bar PXAT *}
{set foo7 bar}
{pexpireat foo7 *}
{set foo8 bar}
{pexpireat foo8 *}
{set foo9 bar}
{pexpireat foo9 *}
{set foo10 bar}
{pexpireat foo10 *}
{set foo11 bar}
{del foo11}
{set foo12 bar}
{pexpireat foo12 *}
{set foo13 bar}
{pexpireat foo13 *}
{set foo14 bar}
{pexpireat foo14 *}
{set foo15 bar}
{pexpireat foo15 *}
{set foo16 bar}
Replace cluster metadata with slot specific dictionaries (#11695) This is an implementation of https://github.com/redis/redis/issues/10589 that eliminates 16 bytes per entry in cluster mode, that are currently used to create a linked list between entries in the same slot. Main idea is splitting main dictionary into 16k smaller dictionaries (one per slot), so we can perform all slot specific operations, such as iteration, without any additional info in the `dictEntry`. For Redis cluster, the expectation is that there will be a larger number of keys, so the fixed overhead of 16k dictionaries will be The expire dictionary is also split up so that each slot is logically decoupled, so that in subsequent revisions we will be able to atomically flush a slot of data. ## Important changes * Incremental rehashing - one big change here is that it's not one, but rather up to 16k dictionaries that can be rehashing at the same time, in order to keep track of them, we introduce a separate queue for dictionaries that are rehashing. Also instead of rehashing a single dictionary, cron job will now try to rehash as many as it can in 1ms. * getRandomKey - now needs to not only select a random key, from the random bucket, but also needs to select a random dictionary. Fairness is a major concern here, as it's possible that keys can be unevenly distributed across the slots. In order to address this search we introduced binary index tree). With that data structure we are able to efficiently find a random slot using binary search in O(log^2(slot count)) time. * Iteration efficiency - when iterating dictionary with a lot of empty slots, we want to skip them efficiently. We can do this using same binary index that is used for random key selection, this index allows us to find a slot for a specific key index. For example if there are 10 keys in the slot 0, then we can quickly find a slot that contains 11th key using binary search on top of the binary index tree. * scan API - in order to perform a scan across the entire DB, the cursor now needs to not only save position within the dictionary but also the slot id. In this change we append slot id into LSB of the cursor so it can be passed around between client and the server. This has interesting side effect, now you'll be able to start scanning specific slot by simply providing slot id as a cursor value. The plan is to not document this as defined behavior, however. It's also worth nothing the SCAN API is now technically incompatible with previous versions, although practically we don't believe it's an issue. * Checksum calculation optimizations - During command execution, we know that all of the keys are from the same slot (outside of a few notable exceptions such as cross slot scripts and modules). We don't want to compute the checksum multiple multiple times, hence we are relying on cached slot id in the client during the command executions. All operations that access random keys, either should pass in the known slot or recompute the slot. * Slot info in RDB - in order to resize individual dictionaries correctly, while loading RDB, it's not enough to know total number of keys (of course we could approximate number of keys per slot, but it won't be precise). To address this issue, we've added additional metadata into RDB that contains number of keys in each slot, which can be used as a hint during loading. * DB size - besides `DBSIZE` API, we need to know size of the DB in many places want, in order to avoid scanning all dictionaries and summing up their sizes in a loop, we've introduced a new field into `redisDb` that keeps track of `key_count`. This way we can keep DBSIZE operation O(1). This is also kept for O(1) expires computation as well. ## Performance This change improves SET performance in cluster mode by ~5%, most of the gains come from us not having to maintain linked lists for keys in slot, non-cluster mode has same performance. For workloads that rely on evictions, the performance is similar because of the extra overhead for finding keys to evict. RDB loading performance is slightly reduced, as the slot of each key needs to be computed during the load. ## Interface changes * Removed `overhead.hashtable.slot-to-keys` to `MEMORY STATS` * Scan API will now require 64 bits to store the cursor, even on 32 bit systems, as the slot information will be stored. * New RDB version to support the new op code for SLOT information. --------- Co-authored-by: Vitaly Arbuzov <arvit@amazon.com> Co-authored-by: Harkrishn Patro <harkrisp@amazon.com> Co-authored-by: Roshan Khatri <rvkhatri@amazon.com> Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2023-10-15 02:58:26 -04:00
{restore foo17 * * ABSTTL}
{restore foo18 * * absttl}
}
# Remember the absolute TTLs of all the keys
set ttl1 [r pexpiretime foo1]
set ttl2 [r pexpiretime foo2]
set ttl3 [r pexpiretime foo3]
set ttl4 [r pexpiretime foo4]
set ttl5 [r pexpiretime foo5]
set ttl6 [r pexpiretime foo6]
set ttl7 [r pexpiretime foo7]
set ttl8 [r pexpiretime foo8]
set ttl9 [r pexpiretime foo9]
set ttl10 [r pexpiretime foo10]
assert_equal "-2" [r pexpiretime foo11] ; # foo11 is gone
set ttl12 [r pexpiretime foo12]
set ttl13 [r pexpiretime foo13]
set ttl14 [r pexpiretime foo14]
set ttl15 [r pexpiretime foo15]
assert_equal "-1" [r pexpiretime foo16] ; # foo16 has no TTL
set ttl17 [r pexpiretime foo17]
set ttl18 [r pexpiretime foo18]
# Let some time pass and reload data from AOF
after 2000
r debug loadaof
# Assert that relative TTLs are roughly the same
assert_range [r ttl foo1] 90 98
assert_range [r ttl foo2] 90 98
assert_range [r ttl foo3] 90 98
assert_range [r ttl foo4] 90 98
assert_range [r ttl foo5] 90 98
assert_range [r ttl foo6] 90 98
assert_range [r ttl foo7] 90 98
assert_range [r ttl foo8] 90 98
assert_range [r ttl foo9] 90 98
assert_range [r ttl foo10] 90 98
assert_equal [r ttl foo11] "-2" ; # foo11 is gone
assert_range [r ttl foo12] 90 98
assert_range [r ttl foo13] 90 98
assert_range [r ttl foo14] 90 98
assert_range [r ttl foo15] 90 98
assert_equal [r ttl foo16] "-1" ; # foo16 has no TTL
assert_range [r ttl foo17] 90 98
assert_range [r ttl foo18] 90 98
# Assert that all keys have restored the same absolute TTLs from AOF
assert_equal [r pexpiretime foo1] $ttl1
assert_equal [r pexpiretime foo2] $ttl2
assert_equal [r pexpiretime foo3] $ttl3
assert_equal [r pexpiretime foo4] $ttl4
assert_equal [r pexpiretime foo5] $ttl5
assert_equal [r pexpiretime foo6] $ttl6
assert_equal [r pexpiretime foo7] $ttl7
assert_equal [r pexpiretime foo8] $ttl8
assert_equal [r pexpiretime foo9] $ttl9
assert_equal [r pexpiretime foo10] $ttl10
assert_equal [r pexpiretime foo11] "-2" ; # foo11 is gone
assert_equal [r pexpiretime foo12] $ttl12
assert_equal [r pexpiretime foo13] $ttl13
assert_equal [r pexpiretime foo14] $ttl14
assert_equal [r pexpiretime foo15] $ttl15
assert_equal [r pexpiretime foo16] "-1" ; # foo16 has no TTL
assert_equal [r pexpiretime foo17] $ttl17
assert_equal [r pexpiretime foo18] $ttl18
Improve test suite to handle external servers better. (#9033) This commit revives the improves the ability to run the test suite against external servers, instead of launching and managing `redis-server` processes as part of the test fixture. This capability existed in the past, using the `--host` and `--port` options. However, it was quite limited and mostly useful when running a specific tests. Attempting to run larger chunks of the test suite experienced many issues: * Many tests depend on being able to start and control `redis-server` themselves, and there's no clear distinction between external server compatible and other tests. * Cluster mode is not supported (resulting with `CROSSSLOT` errors). This PR cleans up many things and makes it possible to run the entire test suite against an external server. It also provides more fine grained controls to handle cases where the external server supports a subset of the Redis commands, limited number of databases, cluster mode, etc. The tests directory now contains a `README.md` file that describes how this works. This commit also includes additional cleanups and fixes: * Tests can now be tagged. * Tag-based selection is now unified across `start_server`, `tags` and `test`. * More information is provided about skipped or ignored tests. * Repeated patterns in tests have been extracted to common procedures, both at a global level and on a per-test file basis. * Cleaned up some cases where test setup was based on a previous test executing (a major anti-pattern that repeats itself in many places). * Cleaned up some cases where test teardown was not part of a test (in the future we should have dedicated teardown code that executes even when tests fail). * Fixed some tests that were flaky running on external servers.
2021-06-09 08:13:24 -04:00
} {} {needs:debug}
}
test {All TTL in commands are propagated as absolute timestamp in replication stream} {
# Make sure that both relative and absolute expire commands are propagated
# as absolute to replicas for two reasons:
# 1) We want to avoid replicas retaining data much longer than primary due
# to replication lag.
# 2) We want to unify the way TTLs are replicated in both RDB and replication
# stream, which is as absolute timestamps.
# See: https://github.com/redict/redict/issues/8433
r flushall ; # Clean up keyspace to avoid interference by keys from other tests
set repl [attach_to_replication_stream]
# SET commands
GETEX, GETDEL and SET PXAT/EXAT (#8327) This commit introduces two new command and two options for an existing command GETEX <key> [PERSIST][EX seconds][PX milliseconds] [EXAT seconds-timestamp] [PXAT milliseconds-timestamp] The getexCommand() function implements extended options and variants of the GET command. Unlike GET command this command is not read-only. Only one of the options can be used at a given time. 1. PERSIST removes any TTL associated with the key. 2. EX Set expiry TTL in seconds. 3. PX Set expiry TTL in milliseconds. 4. EXAT Same like EX instead of specifying the number of seconds representing the TTL (time to live), it takes an absolute Unix timestamp 5. PXAT Same like PX instead of specifying the number of milliseconds representing the TTL (time to live), it takes an absolute Unix timestamp Command would return either the bulk string, error or nil. GETDEL <key> Would delete the key after getting. SET key value [NX] [XX] [KEEPTTL] [GET] [EX <seconds>] [PX <milliseconds>] [EXAT <seconds-timestamp>][PXAT <milliseconds-timestamp>] Two new options added here are EXAT and PXAT Key implementation notes - `SET` with `PX/EX/EXAT/PXAT` is always translated to `PXAT` in `AOF`. When relative time is specified (`PX/EX`), replication will always use `PX`. - `setexCommand` and `psetexCommand` would no longer need translation in `feedAppendOnlyFile` as they are modified to invoke `setGenericCommand ` with appropriate flags which will take care of correct AOF translation. - `GETEX` without any optional argument behaves like `GET`. - `GETEX` command is never propagated, It is either propagated as `PEXPIRE[AT], or PERSIST`. - `GETDEL` command is propagated as `DEL` - Combined the validation for `SET` and `GETEX` arguments. - Test cases to validate AOF/Replication propagation
2021-01-27 12:47:26 -05:00
r set foo1 bar ex 200
r set foo1 bar px 100000
GETEX, GETDEL and SET PXAT/EXAT (#8327) This commit introduces two new command and two options for an existing command GETEX <key> [PERSIST][EX seconds][PX milliseconds] [EXAT seconds-timestamp] [PXAT milliseconds-timestamp] The getexCommand() function implements extended options and variants of the GET command. Unlike GET command this command is not read-only. Only one of the options can be used at a given time. 1. PERSIST removes any TTL associated with the key. 2. EX Set expiry TTL in seconds. 3. PX Set expiry TTL in milliseconds. 4. EXAT Same like EX instead of specifying the number of seconds representing the TTL (time to live), it takes an absolute Unix timestamp 5. PXAT Same like PX instead of specifying the number of milliseconds representing the TTL (time to live), it takes an absolute Unix timestamp Command would return either the bulk string, error or nil. GETDEL <key> Would delete the key after getting. SET key value [NX] [XX] [KEEPTTL] [GET] [EX <seconds>] [PX <milliseconds>] [EXAT <seconds-timestamp>][PXAT <milliseconds-timestamp>] Two new options added here are EXAT and PXAT Key implementation notes - `SET` with `PX/EX/EXAT/PXAT` is always translated to `PXAT` in `AOF`. When relative time is specified (`PX/EX`), replication will always use `PX`. - `setexCommand` and `psetexCommand` would no longer need translation in `feedAppendOnlyFile` as they are modified to invoke `setGenericCommand ` with appropriate flags which will take care of correct AOF translation. - `GETEX` without any optional argument behaves like `GET`. - `GETEX` command is never propagated, It is either propagated as `PEXPIRE[AT], or PERSIST`. - `GETDEL` command is propagated as `DEL` - Combined the validation for `SET` and `GETEX` arguments. - Test cases to validate AOF/Replication propagation
2021-01-27 12:47:26 -05:00
r set foo1 bar exat [expr [clock seconds]+100]
r set foo1 bar pxat [expr [clock milliseconds]+100000]
r setex foo1 100 bar
r psetex foo1 100000 bar
r set foo2 bar
# EXPIRE-family commands
r expire foo2 100
r pexpire foo2 100000
r set foo3 bar
r expireat foo3 [expr [clock seconds]+100]
r pexpireat foo3 [expr [clock seconds]*1000+100000]
r expireat foo3 [expr [clock seconds]-100]
# GETEX-family commands
GETEX, GETDEL and SET PXAT/EXAT (#8327) This commit introduces two new command and two options for an existing command GETEX <key> [PERSIST][EX seconds][PX milliseconds] [EXAT seconds-timestamp] [PXAT milliseconds-timestamp] The getexCommand() function implements extended options and variants of the GET command. Unlike GET command this command is not read-only. Only one of the options can be used at a given time. 1. PERSIST removes any TTL associated with the key. 2. EX Set expiry TTL in seconds. 3. PX Set expiry TTL in milliseconds. 4. EXAT Same like EX instead of specifying the number of seconds representing the TTL (time to live), it takes an absolute Unix timestamp 5. PXAT Same like PX instead of specifying the number of milliseconds representing the TTL (time to live), it takes an absolute Unix timestamp Command would return either the bulk string, error or nil. GETDEL <key> Would delete the key after getting. SET key value [NX] [XX] [KEEPTTL] [GET] [EX <seconds>] [PX <milliseconds>] [EXAT <seconds-timestamp>][PXAT <milliseconds-timestamp>] Two new options added here are EXAT and PXAT Key implementation notes - `SET` with `PX/EX/EXAT/PXAT` is always translated to `PXAT` in `AOF`. When relative time is specified (`PX/EX`), replication will always use `PX`. - `setexCommand` and `psetexCommand` would no longer need translation in `feedAppendOnlyFile` as they are modified to invoke `setGenericCommand ` with appropriate flags which will take care of correct AOF translation. - `GETEX` without any optional argument behaves like `GET`. - `GETEX` command is never propagated, It is either propagated as `PEXPIRE[AT], or PERSIST`. - `GETDEL` command is propagated as `DEL` - Combined the validation for `SET` and `GETEX` arguments. - Test cases to validate AOF/Replication propagation
2021-01-27 12:47:26 -05:00
r set foo4 bar
r getex foo4 ex 200
r getex foo4 px 200000
r getex foo4 exat [expr [clock seconds]+100]
r getex foo4 pxat [expr [clock milliseconds]+100000]
# RESTORE commands
r set foo5 bar
set encoded [r dump foo5]
r restore foo6 100000 $encoded
r restore foo7 [expr [clock milliseconds]+100000] $encoded absttl
assert_replication_stream $repl {
{select *}
GETEX, GETDEL and SET PXAT/EXAT (#8327) This commit introduces two new command and two options for an existing command GETEX <key> [PERSIST][EX seconds][PX milliseconds] [EXAT seconds-timestamp] [PXAT milliseconds-timestamp] The getexCommand() function implements extended options and variants of the GET command. Unlike GET command this command is not read-only. Only one of the options can be used at a given time. 1. PERSIST removes any TTL associated with the key. 2. EX Set expiry TTL in seconds. 3. PX Set expiry TTL in milliseconds. 4. EXAT Same like EX instead of specifying the number of seconds representing the TTL (time to live), it takes an absolute Unix timestamp 5. PXAT Same like PX instead of specifying the number of milliseconds representing the TTL (time to live), it takes an absolute Unix timestamp Command would return either the bulk string, error or nil. GETDEL <key> Would delete the key after getting. SET key value [NX] [XX] [KEEPTTL] [GET] [EX <seconds>] [PX <milliseconds>] [EXAT <seconds-timestamp>][PXAT <milliseconds-timestamp>] Two new options added here are EXAT and PXAT Key implementation notes - `SET` with `PX/EX/EXAT/PXAT` is always translated to `PXAT` in `AOF`. When relative time is specified (`PX/EX`), replication will always use `PX`. - `setexCommand` and `psetexCommand` would no longer need translation in `feedAppendOnlyFile` as they are modified to invoke `setGenericCommand ` with appropriate flags which will take care of correct AOF translation. - `GETEX` without any optional argument behaves like `GET`. - `GETEX` command is never propagated, It is either propagated as `PEXPIRE[AT], or PERSIST`. - `GETDEL` command is propagated as `DEL` - Combined the validation for `SET` and `GETEX` arguments. - Test cases to validate AOF/Replication propagation
2021-01-27 12:47:26 -05:00
{set foo1 bar PXAT *}
{set foo1 bar PXAT *}
{set foo1 bar PXAT *}
{set foo1 bar pxat *}
{set foo1 bar PXAT *}
{set foo1 bar PXAT *}
{set foo2 bar}
{pexpireat foo2 *}
{pexpireat foo2 *}
{set foo3 bar}
{pexpireat foo3 *}
{pexpireat foo3 *}
{del foo3}
GETEX, GETDEL and SET PXAT/EXAT (#8327) This commit introduces two new command and two options for an existing command GETEX <key> [PERSIST][EX seconds][PX milliseconds] [EXAT seconds-timestamp] [PXAT milliseconds-timestamp] The getexCommand() function implements extended options and variants of the GET command. Unlike GET command this command is not read-only. Only one of the options can be used at a given time. 1. PERSIST removes any TTL associated with the key. 2. EX Set expiry TTL in seconds. 3. PX Set expiry TTL in milliseconds. 4. EXAT Same like EX instead of specifying the number of seconds representing the TTL (time to live), it takes an absolute Unix timestamp 5. PXAT Same like PX instead of specifying the number of milliseconds representing the TTL (time to live), it takes an absolute Unix timestamp Command would return either the bulk string, error or nil. GETDEL <key> Would delete the key after getting. SET key value [NX] [XX] [KEEPTTL] [GET] [EX <seconds>] [PX <milliseconds>] [EXAT <seconds-timestamp>][PXAT <milliseconds-timestamp>] Two new options added here are EXAT and PXAT Key implementation notes - `SET` with `PX/EX/EXAT/PXAT` is always translated to `PXAT` in `AOF`. When relative time is specified (`PX/EX`), replication will always use `PX`. - `setexCommand` and `psetexCommand` would no longer need translation in `feedAppendOnlyFile` as they are modified to invoke `setGenericCommand ` with appropriate flags which will take care of correct AOF translation. - `GETEX` without any optional argument behaves like `GET`. - `GETEX` command is never propagated, It is either propagated as `PEXPIRE[AT], or PERSIST`. - `GETDEL` command is propagated as `DEL` - Combined the validation for `SET` and `GETEX` arguments. - Test cases to validate AOF/Replication propagation
2021-01-27 12:47:26 -05:00
{set foo4 bar}
{pexpireat foo4 *}
{pexpireat foo4 *}
{pexpireat foo4 *}
{pexpireat foo4 *}
{set foo5 bar}
Replace cluster metadata with slot specific dictionaries (#11695) This is an implementation of https://github.com/redis/redis/issues/10589 that eliminates 16 bytes per entry in cluster mode, that are currently used to create a linked list between entries in the same slot. Main idea is splitting main dictionary into 16k smaller dictionaries (one per slot), so we can perform all slot specific operations, such as iteration, without any additional info in the `dictEntry`. For Redis cluster, the expectation is that there will be a larger number of keys, so the fixed overhead of 16k dictionaries will be The expire dictionary is also split up so that each slot is logically decoupled, so that in subsequent revisions we will be able to atomically flush a slot of data. ## Important changes * Incremental rehashing - one big change here is that it's not one, but rather up to 16k dictionaries that can be rehashing at the same time, in order to keep track of them, we introduce a separate queue for dictionaries that are rehashing. Also instead of rehashing a single dictionary, cron job will now try to rehash as many as it can in 1ms. * getRandomKey - now needs to not only select a random key, from the random bucket, but also needs to select a random dictionary. Fairness is a major concern here, as it's possible that keys can be unevenly distributed across the slots. In order to address this search we introduced binary index tree). With that data structure we are able to efficiently find a random slot using binary search in O(log^2(slot count)) time. * Iteration efficiency - when iterating dictionary with a lot of empty slots, we want to skip them efficiently. We can do this using same binary index that is used for random key selection, this index allows us to find a slot for a specific key index. For example if there are 10 keys in the slot 0, then we can quickly find a slot that contains 11th key using binary search on top of the binary index tree. * scan API - in order to perform a scan across the entire DB, the cursor now needs to not only save position within the dictionary but also the slot id. In this change we append slot id into LSB of the cursor so it can be passed around between client and the server. This has interesting side effect, now you'll be able to start scanning specific slot by simply providing slot id as a cursor value. The plan is to not document this as defined behavior, however. It's also worth nothing the SCAN API is now technically incompatible with previous versions, although practically we don't believe it's an issue. * Checksum calculation optimizations - During command execution, we know that all of the keys are from the same slot (outside of a few notable exceptions such as cross slot scripts and modules). We don't want to compute the checksum multiple multiple times, hence we are relying on cached slot id in the client during the command executions. All operations that access random keys, either should pass in the known slot or recompute the slot. * Slot info in RDB - in order to resize individual dictionaries correctly, while loading RDB, it's not enough to know total number of keys (of course we could approximate number of keys per slot, but it won't be precise). To address this issue, we've added additional metadata into RDB that contains number of keys in each slot, which can be used as a hint during loading. * DB size - besides `DBSIZE` API, we need to know size of the DB in many places want, in order to avoid scanning all dictionaries and summing up their sizes in a loop, we've introduced a new field into `redisDb` that keeps track of `key_count`. This way we can keep DBSIZE operation O(1). This is also kept for O(1) expires computation as well. ## Performance This change improves SET performance in cluster mode by ~5%, most of the gains come from us not having to maintain linked lists for keys in slot, non-cluster mode has same performance. For workloads that rely on evictions, the performance is similar because of the extra overhead for finding keys to evict. RDB loading performance is slightly reduced, as the slot of each key needs to be computed during the load. ## Interface changes * Removed `overhead.hashtable.slot-to-keys` to `MEMORY STATS` * Scan API will now require 64 bits to store the cursor, even on 32 bit systems, as the slot information will be stored. * New RDB version to support the new op code for SLOT information. --------- Co-authored-by: Vitaly Arbuzov <arvit@amazon.com> Co-authored-by: Harkrishn Patro <harkrisp@amazon.com> Co-authored-by: Roshan Khatri <rvkhatri@amazon.com> Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2023-10-15 02:58:26 -04:00
{restore foo6 * * ABSTTL}
{restore foo7 * * absttl}
}
close_replication_stream $repl
2021-06-29 09:48:52 -04:00
} {} {needs:repl}
# Start another server to test replication of TTLs
Improve test suite to handle external servers better. (#9033) This commit revives the improves the ability to run the test suite against external servers, instead of launching and managing `redis-server` processes as part of the test fixture. This capability existed in the past, using the `--host` and `--port` options. However, it was quite limited and mostly useful when running a specific tests. Attempting to run larger chunks of the test suite experienced many issues: * Many tests depend on being able to start and control `redis-server` themselves, and there's no clear distinction between external server compatible and other tests. * Cluster mode is not supported (resulting with `CROSSSLOT` errors). This PR cleans up many things and makes it possible to run the entire test suite against an external server. It also provides more fine grained controls to handle cases where the external server supports a subset of the Redis commands, limited number of databases, cluster mode, etc. The tests directory now contains a `README.md` file that describes how this works. This commit also includes additional cleanups and fixes: * Tests can now be tagged. * Tag-based selection is now unified across `start_server`, `tags` and `test`. * More information is provided about skipped or ignored tests. * Repeated patterns in tests have been extracted to common procedures, both at a global level and on a per-test file basis. * Cleaned up some cases where test setup was based on a previous test executing (a major anti-pattern that repeats itself in many places). * Cleaned up some cases where test teardown was not part of a test (in the future we should have dedicated teardown code that executes even when tests fail). * Fixed some tests that were flaky running on external servers.
2021-06-09 08:13:24 -04:00
start_server {tags {needs:repl external:skip}} {
# Set the outer layer server as primary
set primary [srv -1 client]
set primary_host [srv -1 host]
set primary_port [srv -1 port]
# Set this inner layer server as replica
set replica [srv 0 client]
test {First server should have role slave after REPLICAOF} {
$replica replicaof $primary_host $primary_port
wait_for_condition 50 100 {
[s 0 role] eq {slave}
} else {
fail "Replication not started."
}
}
test {For all replicated TTL-related commands, absolute expire times are identical on primary and replica} {
# Apply each TTL-related command to a unique key on primary
# SET commands
$primary set foo1 bar ex 100
$primary set foo2 bar px 100000
$primary set foo3 bar exat [expr [clock seconds]+100]
$primary set foo4 bar pxat [expr [clock milliseconds]+100000]
$primary setex foo5 100 bar
$primary psetex foo6 100000 bar
# EXPIRE-family commands
$primary set foo7 bar
$primary expire foo7 100
$primary set foo8 bar
$primary pexpire foo8 100000
$primary set foo9 bar
$primary expireat foo9 [expr [clock seconds]+100]
$primary set foo10 bar
$primary pexpireat foo10 [expr [clock milliseconds]+100000]
# GETEX commands
$primary set foo11 bar
$primary getex foo11 ex 100
$primary set foo12 bar
$primary getex foo12 px 100000
$primary set foo13 bar
$primary getex foo13 exat [expr [clock seconds]+100]
$primary set foo14 bar
$primary getex foo14 pxat [expr [clock milliseconds]+100000]
# RESTORE commands
$primary set foo15 bar
set encoded [$primary dump foo15]
$primary restore foo16 100000 $encoded
$primary restore foo17 [expr [clock milliseconds]+100000] $encoded absttl
# Wait for replica to get the keys and TTLs
assert {[$primary wait 1 0] == 1}
# Verify absolute TTLs are identical on primary and replica for all keys
# This is because TTLs are always replicated as absolute values
foreach key [$primary keys *] {
assert_equal [$primary pexpiretime $key] [$replica pexpiretime $key]
}
}
test {expired key which is created in writeable replicas should be deleted by active expiry} {
$primary flushall
$replica config set replica-read-only no
foreach {yes_or_no} {yes no} {
$replica config set appendonly $yes_or_no
waitForBgrewriteaof $replica
set prev_expired [s expired_keys]
$replica set foo bar PX 1
wait_for_condition 100 10 {
[s expired_keys] eq $prev_expired + 1
} else {
fail "key not expired"
}
assert_equal {} [$replica get foo]
}
}
}
test {SET command will remove expire} {
r set foo bar EX 100
r set foo bar
r ttl foo
} {-1}
test {SET - use KEEPTTL option, TTL should not be removed} {
r set foo bar EX 100
r set foo bar KEEPTTL
set ttl [r ttl foo]
assert {$ttl <= 100 && $ttl > 90}
}
test {SET - use KEEPTTL option, TTL should not be removed after loadaof} {
r config set appendonly yes
r set foo bar EX 100
r set foo bar2 KEEPTTL
after 2000
r debug loadaof
set ttl [r ttl foo]
assert {$ttl <= 98 && $ttl > 90}
Improve test suite to handle external servers better. (#9033) This commit revives the improves the ability to run the test suite against external servers, instead of launching and managing `redis-server` processes as part of the test fixture. This capability existed in the past, using the `--host` and `--port` options. However, it was quite limited and mostly useful when running a specific tests. Attempting to run larger chunks of the test suite experienced many issues: * Many tests depend on being able to start and control `redis-server` themselves, and there's no clear distinction between external server compatible and other tests. * Cluster mode is not supported (resulting with `CROSSSLOT` errors). This PR cleans up many things and makes it possible to run the entire test suite against an external server. It also provides more fine grained controls to handle cases where the external server supports a subset of the Redis commands, limited number of databases, cluster mode, etc. The tests directory now contains a `README.md` file that describes how this works. This commit also includes additional cleanups and fixes: * Tests can now be tagged. * Tag-based selection is now unified across `start_server`, `tags` and `test`. * More information is provided about skipped or ignored tests. * Repeated patterns in tests have been extracted to common procedures, both at a global level and on a per-test file basis. * Cleaned up some cases where test setup was based on a previous test executing (a major anti-pattern that repeats itself in many places). * Cleaned up some cases where test teardown was not part of a test (in the future we should have dedicated teardown code that executes even when tests fail). * Fixed some tests that were flaky running on external servers.
2021-06-09 08:13:24 -04:00
} {} {needs:debug}
GETEX, GETDEL and SET PXAT/EXAT (#8327) This commit introduces two new command and two options for an existing command GETEX <key> [PERSIST][EX seconds][PX milliseconds] [EXAT seconds-timestamp] [PXAT milliseconds-timestamp] The getexCommand() function implements extended options and variants of the GET command. Unlike GET command this command is not read-only. Only one of the options can be used at a given time. 1. PERSIST removes any TTL associated with the key. 2. EX Set expiry TTL in seconds. 3. PX Set expiry TTL in milliseconds. 4. EXAT Same like EX instead of specifying the number of seconds representing the TTL (time to live), it takes an absolute Unix timestamp 5. PXAT Same like PX instead of specifying the number of milliseconds representing the TTL (time to live), it takes an absolute Unix timestamp Command would return either the bulk string, error or nil. GETDEL <key> Would delete the key after getting. SET key value [NX] [XX] [KEEPTTL] [GET] [EX <seconds>] [PX <milliseconds>] [EXAT <seconds-timestamp>][PXAT <milliseconds-timestamp>] Two new options added here are EXAT and PXAT Key implementation notes - `SET` with `PX/EX/EXAT/PXAT` is always translated to `PXAT` in `AOF`. When relative time is specified (`PX/EX`), replication will always use `PX`. - `setexCommand` and `psetexCommand` would no longer need translation in `feedAppendOnlyFile` as they are modified to invoke `setGenericCommand ` with appropriate flags which will take care of correct AOF translation. - `GETEX` without any optional argument behaves like `GET`. - `GETEX` command is never propagated, It is either propagated as `PEXPIRE[AT], or PERSIST`. - `GETDEL` command is propagated as `DEL` - Combined the validation for `SET` and `GETEX` arguments. - Test cases to validate AOF/Replication propagation
2021-01-27 12:47:26 -05:00
test {GETEX use of PERSIST option should remove TTL} {
r set foo bar EX 100
r getex foo PERSIST
r ttl foo
} {-1}
test {GETEX use of PERSIST option should remove TTL after loadaof} {
r config set appendonly yes
GETEX, GETDEL and SET PXAT/EXAT (#8327) This commit introduces two new command and two options for an existing command GETEX <key> [PERSIST][EX seconds][PX milliseconds] [EXAT seconds-timestamp] [PXAT milliseconds-timestamp] The getexCommand() function implements extended options and variants of the GET command. Unlike GET command this command is not read-only. Only one of the options can be used at a given time. 1. PERSIST removes any TTL associated with the key. 2. EX Set expiry TTL in seconds. 3. PX Set expiry TTL in milliseconds. 4. EXAT Same like EX instead of specifying the number of seconds representing the TTL (time to live), it takes an absolute Unix timestamp 5. PXAT Same like PX instead of specifying the number of milliseconds representing the TTL (time to live), it takes an absolute Unix timestamp Command would return either the bulk string, error or nil. GETDEL <key> Would delete the key after getting. SET key value [NX] [XX] [KEEPTTL] [GET] [EX <seconds>] [PX <milliseconds>] [EXAT <seconds-timestamp>][PXAT <milliseconds-timestamp>] Two new options added here are EXAT and PXAT Key implementation notes - `SET` with `PX/EX/EXAT/PXAT` is always translated to `PXAT` in `AOF`. When relative time is specified (`PX/EX`), replication will always use `PX`. - `setexCommand` and `psetexCommand` would no longer need translation in `feedAppendOnlyFile` as they are modified to invoke `setGenericCommand ` with appropriate flags which will take care of correct AOF translation. - `GETEX` without any optional argument behaves like `GET`. - `GETEX` command is never propagated, It is either propagated as `PEXPIRE[AT], or PERSIST`. - `GETDEL` command is propagated as `DEL` - Combined the validation for `SET` and `GETEX` arguments. - Test cases to validate AOF/Replication propagation
2021-01-27 12:47:26 -05:00
r set foo bar EX 100
r getex foo PERSIST
r debug loadaof
r ttl foo
Improve test suite to handle external servers better. (#9033) This commit revives the improves the ability to run the test suite against external servers, instead of launching and managing `redis-server` processes as part of the test fixture. This capability existed in the past, using the `--host` and `--port` options. However, it was quite limited and mostly useful when running a specific tests. Attempting to run larger chunks of the test suite experienced many issues: * Many tests depend on being able to start and control `redis-server` themselves, and there's no clear distinction between external server compatible and other tests. * Cluster mode is not supported (resulting with `CROSSSLOT` errors). This PR cleans up many things and makes it possible to run the entire test suite against an external server. It also provides more fine grained controls to handle cases where the external server supports a subset of the Redis commands, limited number of databases, cluster mode, etc. The tests directory now contains a `README.md` file that describes how this works. This commit also includes additional cleanups and fixes: * Tests can now be tagged. * Tag-based selection is now unified across `start_server`, `tags` and `test`. * More information is provided about skipped or ignored tests. * Repeated patterns in tests have been extracted to common procedures, both at a global level and on a per-test file basis. * Cleaned up some cases where test setup was based on a previous test executing (a major anti-pattern that repeats itself in many places). * Cleaned up some cases where test teardown was not part of a test (in the future we should have dedicated teardown code that executes even when tests fail). * Fixed some tests that were flaky running on external servers.
2021-06-09 08:13:24 -04:00
} {-1} {needs:debug}
GETEX, GETDEL and SET PXAT/EXAT (#8327) This commit introduces two new command and two options for an existing command GETEX <key> [PERSIST][EX seconds][PX milliseconds] [EXAT seconds-timestamp] [PXAT milliseconds-timestamp] The getexCommand() function implements extended options and variants of the GET command. Unlike GET command this command is not read-only. Only one of the options can be used at a given time. 1. PERSIST removes any TTL associated with the key. 2. EX Set expiry TTL in seconds. 3. PX Set expiry TTL in milliseconds. 4. EXAT Same like EX instead of specifying the number of seconds representing the TTL (time to live), it takes an absolute Unix timestamp 5. PXAT Same like PX instead of specifying the number of milliseconds representing the TTL (time to live), it takes an absolute Unix timestamp Command would return either the bulk string, error or nil. GETDEL <key> Would delete the key after getting. SET key value [NX] [XX] [KEEPTTL] [GET] [EX <seconds>] [PX <milliseconds>] [EXAT <seconds-timestamp>][PXAT <milliseconds-timestamp>] Two new options added here are EXAT and PXAT Key implementation notes - `SET` with `PX/EX/EXAT/PXAT` is always translated to `PXAT` in `AOF`. When relative time is specified (`PX/EX`), replication will always use `PX`. - `setexCommand` and `psetexCommand` would no longer need translation in `feedAppendOnlyFile` as they are modified to invoke `setGenericCommand ` with appropriate flags which will take care of correct AOF translation. - `GETEX` without any optional argument behaves like `GET`. - `GETEX` command is never propagated, It is either propagated as `PEXPIRE[AT], or PERSIST`. - `GETDEL` command is propagated as `DEL` - Combined the validation for `SET` and `GETEX` arguments. - Test cases to validate AOF/Replication propagation
2021-01-27 12:47:26 -05:00
test {GETEX propagate as to replica as PERSIST, DEL, or nothing} {
# In the above tests, many keys with random expiration times are set, flush
# the DBs to avoid active expiry kicking in and messing the replication streams.
r flushall
GETEX, GETDEL and SET PXAT/EXAT (#8327) This commit introduces two new command and two options for an existing command GETEX <key> [PERSIST][EX seconds][PX milliseconds] [EXAT seconds-timestamp] [PXAT milliseconds-timestamp] The getexCommand() function implements extended options and variants of the GET command. Unlike GET command this command is not read-only. Only one of the options can be used at a given time. 1. PERSIST removes any TTL associated with the key. 2. EX Set expiry TTL in seconds. 3. PX Set expiry TTL in milliseconds. 4. EXAT Same like EX instead of specifying the number of seconds representing the TTL (time to live), it takes an absolute Unix timestamp 5. PXAT Same like PX instead of specifying the number of milliseconds representing the TTL (time to live), it takes an absolute Unix timestamp Command would return either the bulk string, error or nil. GETDEL <key> Would delete the key after getting. SET key value [NX] [XX] [KEEPTTL] [GET] [EX <seconds>] [PX <milliseconds>] [EXAT <seconds-timestamp>][PXAT <milliseconds-timestamp>] Two new options added here are EXAT and PXAT Key implementation notes - `SET` with `PX/EX/EXAT/PXAT` is always translated to `PXAT` in `AOF`. When relative time is specified (`PX/EX`), replication will always use `PX`. - `setexCommand` and `psetexCommand` would no longer need translation in `feedAppendOnlyFile` as they are modified to invoke `setGenericCommand ` with appropriate flags which will take care of correct AOF translation. - `GETEX` without any optional argument behaves like `GET`. - `GETEX` command is never propagated, It is either propagated as `PEXPIRE[AT], or PERSIST`. - `GETDEL` command is propagated as `DEL` - Combined the validation for `SET` and `GETEX` arguments. - Test cases to validate AOF/Replication propagation
2021-01-27 12:47:26 -05:00
set repl [attach_to_replication_stream]
r set foo bar EX 100
r getex foo PERSIST
r getex foo
r getex foo exat [expr [clock seconds]-100]
assert_replication_stream $repl {
{select *}
{set foo bar PXAT *}
GETEX, GETDEL and SET PXAT/EXAT (#8327) This commit introduces two new command and two options for an existing command GETEX <key> [PERSIST][EX seconds][PX milliseconds] [EXAT seconds-timestamp] [PXAT milliseconds-timestamp] The getexCommand() function implements extended options and variants of the GET command. Unlike GET command this command is not read-only. Only one of the options can be used at a given time. 1. PERSIST removes any TTL associated with the key. 2. EX Set expiry TTL in seconds. 3. PX Set expiry TTL in milliseconds. 4. EXAT Same like EX instead of specifying the number of seconds representing the TTL (time to live), it takes an absolute Unix timestamp 5. PXAT Same like PX instead of specifying the number of milliseconds representing the TTL (time to live), it takes an absolute Unix timestamp Command would return either the bulk string, error or nil. GETDEL <key> Would delete the key after getting. SET key value [NX] [XX] [KEEPTTL] [GET] [EX <seconds>] [PX <milliseconds>] [EXAT <seconds-timestamp>][PXAT <milliseconds-timestamp>] Two new options added here are EXAT and PXAT Key implementation notes - `SET` with `PX/EX/EXAT/PXAT` is always translated to `PXAT` in `AOF`. When relative time is specified (`PX/EX`), replication will always use `PX`. - `setexCommand` and `psetexCommand` would no longer need translation in `feedAppendOnlyFile` as they are modified to invoke `setGenericCommand ` with appropriate flags which will take care of correct AOF translation. - `GETEX` without any optional argument behaves like `GET`. - `GETEX` command is never propagated, It is either propagated as `PEXPIRE[AT], or PERSIST`. - `GETDEL` command is propagated as `DEL` - Combined the validation for `SET` and `GETEX` arguments. - Test cases to validate AOF/Replication propagation
2021-01-27 12:47:26 -05:00
{persist foo}
{del foo}
}
close_replication_stream $repl
Improve test suite to handle external servers better. (#9033) This commit revives the improves the ability to run the test suite against external servers, instead of launching and managing `redis-server` processes as part of the test fixture. This capability existed in the past, using the `--host` and `--port` options. However, it was quite limited and mostly useful when running a specific tests. Attempting to run larger chunks of the test suite experienced many issues: * Many tests depend on being able to start and control `redis-server` themselves, and there's no clear distinction between external server compatible and other tests. * Cluster mode is not supported (resulting with `CROSSSLOT` errors). This PR cleans up many things and makes it possible to run the entire test suite against an external server. It also provides more fine grained controls to handle cases where the external server supports a subset of the Redis commands, limited number of databases, cluster mode, etc. The tests directory now contains a `README.md` file that describes how this works. This commit also includes additional cleanups and fixes: * Tests can now be tagged. * Tag-based selection is now unified across `start_server`, `tags` and `test`. * More information is provided about skipped or ignored tests. * Repeated patterns in tests have been extracted to common procedures, both at a global level and on a per-test file basis. * Cleaned up some cases where test setup was based on a previous test executing (a major anti-pattern that repeats itself in many places). * Cleaned up some cases where test teardown was not part of a test (in the future we should have dedicated teardown code that executes even when tests fail). * Fixed some tests that were flaky running on external servers.
2021-06-09 08:13:24 -04:00
} {} {needs:repl}
test {EXPIRE with NX option on a key with ttl} {
r SET foo bar EX 100
assert_equal [r EXPIRE foo 200 NX] 0
assert_range [r TTL foo] 50 100
} {}
test {EXPIRE with NX option on a key without ttl} {
r SET foo bar
assert_equal [r EXPIRE foo 200 NX] 1
assert_range [r TTL foo] 100 200
} {}
test {EXPIRE with XX option on a key with ttl} {
r SET foo bar EX 100
assert_equal [r EXPIRE foo 200 XX] 1
assert_range [r TTL foo] 100 200
} {}
test {EXPIRE with XX option on a key without ttl} {
r SET foo bar
assert_equal [r EXPIRE foo 200 XX] 0
assert_equal [r TTL foo] -1
} {}
test {EXPIRE with GT option on a key with lower ttl} {
r SET foo bar EX 100
assert_equal [r EXPIRE foo 200 GT] 1
assert_range [r TTL foo] 100 200
} {}
test {EXPIRE with GT option on a key with higher ttl} {
r SET foo bar EX 200
assert_equal [r EXPIRE foo 100 GT] 0
assert_range [r TTL foo] 100 200
} {}
test {EXPIRE with GT option on a key without ttl} {
r SET foo bar
assert_equal [r EXPIRE foo 200 GT] 0
assert_equal [r TTL foo] -1
} {}
test {EXPIRE with LT option on a key with higher ttl} {
r SET foo bar EX 100
assert_equal [r EXPIRE foo 200 LT] 0
assert_range [r TTL foo] 50 100
} {}
test {EXPIRE with LT option on a key with lower ttl} {
r SET foo bar EX 200
assert_equal [r EXPIRE foo 100 LT] 1
assert_range [r TTL foo] 50 100
} {}
test {EXPIRE with LT option on a key without ttl} {
r SET foo bar
assert_equal [r EXPIRE foo 100 LT] 1
assert_range [r TTL foo] 50 100
} {}
test {EXPIRE with LT and XX option on a key with ttl} {
r SET foo bar EX 200
assert_equal [r EXPIRE foo 100 LT XX] 1
assert_range [r TTL foo] 50 100
} {}
test {EXPIRE with LT and XX option on a key without ttl} {
r SET foo bar
assert_equal [r EXPIRE foo 200 LT XX] 0
assert_equal [r TTL foo] -1
} {}
test {EXPIRE with conflicting options: LT GT} {
catch {r EXPIRE foo 200 LT GT} e
set e
} {ERR GT and LT options at the same time are not compatible}
test {EXPIRE with conflicting options: NX GT} {
catch {r EXPIRE foo 200 NX GT} e
set e
} {ERR NX and XX, GT or LT options at the same time are not compatible}
test {EXPIRE with conflicting options: NX LT} {
catch {r EXPIRE foo 200 NX LT} e
set e
} {ERR NX and XX, GT or LT options at the same time are not compatible}
test {EXPIRE with conflicting options: NX XX} {
catch {r EXPIRE foo 200 NX XX} e
set e
} {ERR NX and XX, GT or LT options at the same time are not compatible}
test {EXPIRE with unsupported options} {
catch {r EXPIRE foo 200 AB} e
set e
} {ERR Unsupported option AB}
test {EXPIRE with unsupported options} {
catch {r EXPIRE foo 200 XX AB} e
set e
} {ERR Unsupported option AB}
test {EXPIRE with negative expiry} {
r SET foo bar EX 100
assert_equal [r EXPIRE foo -10 LT] 1
assert_equal [r TTL foo] -2
} {}
test {EXPIRE with negative expiry on a non-valitale key} {
r SET foo bar
assert_equal [r EXPIRE foo -10 LT] 1
assert_equal [r TTL foo] -2
} {}
test {EXPIRE with non-existed key} {
assert_equal [r EXPIRE none 100 NX] 0
assert_equal [r EXPIRE none 100 XX] 0
assert_equal [r EXPIRE none 100 GT] 0
assert_equal [r EXPIRE none 100 LT] 0
} {}
Fix replication inconsistency on modules that uses key space notifications (#10969) Fix replication inconsistency on modules that uses key space notifications. ### The Problem In general, key space notifications are invoked after the command logic was executed (this is not always the case, we will discuss later about specific command that do not follow this rules). For example, the `set x 1` will trigger a `set` notification that will be invoked after the `set` logic was performed, so if the notification logic will try to fetch `x`, it will see the new data that was written. Consider the scenario on which the notification logic performs some write commands. for example, the notification logic increase some counter, `incr x{counter}`, indicating how many times `x` was changed. The logical order by which the logic was executed is has follow: ``` set x 1 incr x{counter} ``` The issue is that the `set x 1` command is added to the replication buffer at the end of the command invocation (specifically after the key space notification logic was invoked and performed the `incr` command). The replication/aof sees the commands in the wrong order: ``` incr x{counter} set x 1 ``` In this specific example the order is less important. But if, for example, the notification would have deleted `x` then we would end up with primary-replica inconsistency. ### The Solution Put the command that cause the notification in its rightful place. In the above example, the `set x 1` command logic was executed before the notification logic, so it should be added to the replication buffer before the commands that is invoked by the notification logic. To achieve this, without a major code refactoring, we save a placeholder in the replication buffer, when finishing invoking the command logic we check if the command need to be replicated, and if it does, we use the placeholder to add it to the replication buffer instead of appending it to the end. To be efficient and not allocating memory on each command to save the placeholder, the replication buffer array was modified to reuse memory (instead of allocating it each time we want to replicate commands). Also, to avoid saving a placeholder when not needed, we do it only for WRITE or MAY_REPLICATE commands. #### Additional Fixes * Expire and Eviction notifications: * Expire/Eviction logical order was to first perform the Expire/Eviction and then the notification logic. The replication buffer got this in the other way around (first notification effect and then the `del` command). The PR fixes this issue. * The notification effect and the `del` command was not wrap with `multi-exec` (if needed). The PR also fix this issue. * SPOP command: * On spop, the `spop` notification was fired before the command logic was executed. The change in this PR would have cause the replication order to be change (first `spop` command and then notification `logic`) although the logical order is first the notification logic and then the `spop` logic. The right fix would have been to move the notification to be fired after the command was executed (like all the other commands), but this can be considered a breaking change. To overcome this, the PR keeps the current behavior and changes the `spop` code to keep the right logical order when pushing commands to the replication buffer. Another PR will follow to fix the SPOP properly and match it to the other command (we split it to 2 separate PR's so it will be easy to cherry-pick this PR to 7.0 if we chose to). #### Unhanded Known Limitations * key miss event: * On key miss event, if a module performed some write command on the event (using `RM_Call`), the `dirty` counter would increase and the read command that cause the key miss event would be replicated to the replication and aof. This problem can also happened on a write command that open some keys but eventually decides not to perform any action. We decided not to handle this problem on this PR because the solution is complex and will cause additional risks in case we will want to cherry-pick this PR. We should decide if we want to handle it in future PR's. For now, modules writers is advice not to perform any write commands on key miss event. #### Testing * We already have tests to cover cases where a notification is invoking write commands that are also added to the replication buffer, the tests was modified to verify that the replica gets the command in the correct logical order. * Test was added to verify that `spop` behavior was kept unchanged. * Test was added to verify key miss event behave as expected. * Test was added to verify the changes do not break lazy expiration. #### Additional Changes * `propagateNow` function can accept a special dbid, -1, indicating not to replicate `select`. We use this to replicate `multi/exec` on `propagatePendingCommands` function. The side effect of this change is that now the `select` command will appear inside the `multi/exec` block on the replication stream (instead of outside of the `multi/exec` block). Tests was modified to match this new behavior.
2022-08-18 03:16:32 -04:00
test {Redict should not propagate the read command on lazy expire} {
Fix replication inconsistency on modules that uses key space notifications (#10969) Fix replication inconsistency on modules that uses key space notifications. ### The Problem In general, key space notifications are invoked after the command logic was executed (this is not always the case, we will discuss later about specific command that do not follow this rules). For example, the `set x 1` will trigger a `set` notification that will be invoked after the `set` logic was performed, so if the notification logic will try to fetch `x`, it will see the new data that was written. Consider the scenario on which the notification logic performs some write commands. for example, the notification logic increase some counter, `incr x{counter}`, indicating how many times `x` was changed. The logical order by which the logic was executed is has follow: ``` set x 1 incr x{counter} ``` The issue is that the `set x 1` command is added to the replication buffer at the end of the command invocation (specifically after the key space notification logic was invoked and performed the `incr` command). The replication/aof sees the commands in the wrong order: ``` incr x{counter} set x 1 ``` In this specific example the order is less important. But if, for example, the notification would have deleted `x` then we would end up with primary-replica inconsistency. ### The Solution Put the command that cause the notification in its rightful place. In the above example, the `set x 1` command logic was executed before the notification logic, so it should be added to the replication buffer before the commands that is invoked by the notification logic. To achieve this, without a major code refactoring, we save a placeholder in the replication buffer, when finishing invoking the command logic we check if the command need to be replicated, and if it does, we use the placeholder to add it to the replication buffer instead of appending it to the end. To be efficient and not allocating memory on each command to save the placeholder, the replication buffer array was modified to reuse memory (instead of allocating it each time we want to replicate commands). Also, to avoid saving a placeholder when not needed, we do it only for WRITE or MAY_REPLICATE commands. #### Additional Fixes * Expire and Eviction notifications: * Expire/Eviction logical order was to first perform the Expire/Eviction and then the notification logic. The replication buffer got this in the other way around (first notification effect and then the `del` command). The PR fixes this issue. * The notification effect and the `del` command was not wrap with `multi-exec` (if needed). The PR also fix this issue. * SPOP command: * On spop, the `spop` notification was fired before the command logic was executed. The change in this PR would have cause the replication order to be change (first `spop` command and then notification `logic`) although the logical order is first the notification logic and then the `spop` logic. The right fix would have been to move the notification to be fired after the command was executed (like all the other commands), but this can be considered a breaking change. To overcome this, the PR keeps the current behavior and changes the `spop` code to keep the right logical order when pushing commands to the replication buffer. Another PR will follow to fix the SPOP properly and match it to the other command (we split it to 2 separate PR's so it will be easy to cherry-pick this PR to 7.0 if we chose to). #### Unhanded Known Limitations * key miss event: * On key miss event, if a module performed some write command on the event (using `RM_Call`), the `dirty` counter would increase and the read command that cause the key miss event would be replicated to the replication and aof. This problem can also happened on a write command that open some keys but eventually decides not to perform any action. We decided not to handle this problem on this PR because the solution is complex and will cause additional risks in case we will want to cherry-pick this PR. We should decide if we want to handle it in future PR's. For now, modules writers is advice not to perform any write commands on key miss event. #### Testing * We already have tests to cover cases where a notification is invoking write commands that are also added to the replication buffer, the tests was modified to verify that the replica gets the command in the correct logical order. * Test was added to verify that `spop` behavior was kept unchanged. * Test was added to verify key miss event behave as expected. * Test was added to verify the changes do not break lazy expiration. #### Additional Changes * `propagateNow` function can accept a special dbid, -1, indicating not to replicate `select`. We use this to replicate `multi/exec` on `propagatePendingCommands` function. The side effect of this change is that now the `select` command will appear inside the `multi/exec` block on the replication stream (instead of outside of the `multi/exec` block). Tests was modified to match this new behavior.
2022-08-18 03:16:32 -04:00
r debug set-active-expire 0
r flushall ; # Clean up keyspace to avoid interference by keys from other tests
r set foo bar PX 1
set repl [attach_to_replication_stream]
wait_for_condition 50 100 {
[r get foo] eq {}
} else {
fail "Replication not started."
}
# dummy command to verify nothing else gets into the replication stream.
r set x 1
assert_replication_stream $repl {
{select *}
{del foo}
{set x 1}
}
close_replication_stream $repl
assert_equal [r debug set-active-expire 1] {OK}
} {} {needs:debug}
test {SCAN: Lazy-expire should not be wrapped in MULTI/EXEC} {
r debug set-active-expire 0
r flushall
r set foo1 bar PX 1
r set foo2 bar PX 1
after 2
set repl [attach_to_replication_stream]
r scan 0
assert_replication_stream $repl {
{select *}
{del foo*}
{del foo*}
}
close_replication_stream $repl
assert_equal [r debug set-active-expire 1] {OK}
} {} {needs:debug}
test {RANDOMKEY: Lazy-expire should not be wrapped in MULTI/EXEC} {
r debug set-active-expire 0
r flushall
r set foo1 bar PX 1
r set foo2 bar PX 1
after 2
set repl [attach_to_replication_stream]
r randomkey
assert_replication_stream $repl {
{select *}
{del foo*}
{del foo*}
}
close_replication_stream $repl
assert_equal [r debug set-active-expire 1] {OK}
} {} {needs:debug}
}
Replace cluster metadata with slot specific dictionaries (#11695) This is an implementation of https://github.com/redis/redis/issues/10589 that eliminates 16 bytes per entry in cluster mode, that are currently used to create a linked list between entries in the same slot. Main idea is splitting main dictionary into 16k smaller dictionaries (one per slot), so we can perform all slot specific operations, such as iteration, without any additional info in the `dictEntry`. For Redis cluster, the expectation is that there will be a larger number of keys, so the fixed overhead of 16k dictionaries will be The expire dictionary is also split up so that each slot is logically decoupled, so that in subsequent revisions we will be able to atomically flush a slot of data. ## Important changes * Incremental rehashing - one big change here is that it's not one, but rather up to 16k dictionaries that can be rehashing at the same time, in order to keep track of them, we introduce a separate queue for dictionaries that are rehashing. Also instead of rehashing a single dictionary, cron job will now try to rehash as many as it can in 1ms. * getRandomKey - now needs to not only select a random key, from the random bucket, but also needs to select a random dictionary. Fairness is a major concern here, as it's possible that keys can be unevenly distributed across the slots. In order to address this search we introduced binary index tree). With that data structure we are able to efficiently find a random slot using binary search in O(log^2(slot count)) time. * Iteration efficiency - when iterating dictionary with a lot of empty slots, we want to skip them efficiently. We can do this using same binary index that is used for random key selection, this index allows us to find a slot for a specific key index. For example if there are 10 keys in the slot 0, then we can quickly find a slot that contains 11th key using binary search on top of the binary index tree. * scan API - in order to perform a scan across the entire DB, the cursor now needs to not only save position within the dictionary but also the slot id. In this change we append slot id into LSB of the cursor so it can be passed around between client and the server. This has interesting side effect, now you'll be able to start scanning specific slot by simply providing slot id as a cursor value. The plan is to not document this as defined behavior, however. It's also worth nothing the SCAN API is now technically incompatible with previous versions, although practically we don't believe it's an issue. * Checksum calculation optimizations - During command execution, we know that all of the keys are from the same slot (outside of a few notable exceptions such as cross slot scripts and modules). We don't want to compute the checksum multiple multiple times, hence we are relying on cached slot id in the client during the command executions. All operations that access random keys, either should pass in the known slot or recompute the slot. * Slot info in RDB - in order to resize individual dictionaries correctly, while loading RDB, it's not enough to know total number of keys (of course we could approximate number of keys per slot, but it won't be precise). To address this issue, we've added additional metadata into RDB that contains number of keys in each slot, which can be used as a hint during loading. * DB size - besides `DBSIZE` API, we need to know size of the DB in many places want, in order to avoid scanning all dictionaries and summing up their sizes in a loop, we've introduced a new field into `redisDb` that keeps track of `key_count`. This way we can keep DBSIZE operation O(1). This is also kept for O(1) expires computation as well. ## Performance This change improves SET performance in cluster mode by ~5%, most of the gains come from us not having to maintain linked lists for keys in slot, non-cluster mode has same performance. For workloads that rely on evictions, the performance is similar because of the extra overhead for finding keys to evict. RDB loading performance is slightly reduced, as the slot of each key needs to be computed during the load. ## Interface changes * Removed `overhead.hashtable.slot-to-keys` to `MEMORY STATS` * Scan API will now require 64 bits to store the cursor, even on 32 bit systems, as the slot information will be stored. * New RDB version to support the new op code for SLOT information. --------- Co-authored-by: Vitaly Arbuzov <arvit@amazon.com> Co-authored-by: Harkrishn Patro <harkrisp@amazon.com> Co-authored-by: Roshan Khatri <rvkhatri@amazon.com> Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2023-10-15 02:58:26 -04:00
start_cluster 1 0 {tags {"expire external:skip cluster"}} {
Replace cluster metadata with slot specific dictionaries (#11695) This is an implementation of https://github.com/redis/redis/issues/10589 that eliminates 16 bytes per entry in cluster mode, that are currently used to create a linked list between entries in the same slot. Main idea is splitting main dictionary into 16k smaller dictionaries (one per slot), so we can perform all slot specific operations, such as iteration, without any additional info in the `dictEntry`. For Redis cluster, the expectation is that there will be a larger number of keys, so the fixed overhead of 16k dictionaries will be The expire dictionary is also split up so that each slot is logically decoupled, so that in subsequent revisions we will be able to atomically flush a slot of data. ## Important changes * Incremental rehashing - one big change here is that it's not one, but rather up to 16k dictionaries that can be rehashing at the same time, in order to keep track of them, we introduce a separate queue for dictionaries that are rehashing. Also instead of rehashing a single dictionary, cron job will now try to rehash as many as it can in 1ms. * getRandomKey - now needs to not only select a random key, from the random bucket, but also needs to select a random dictionary. Fairness is a major concern here, as it's possible that keys can be unevenly distributed across the slots. In order to address this search we introduced binary index tree). With that data structure we are able to efficiently find a random slot using binary search in O(log^2(slot count)) time. * Iteration efficiency - when iterating dictionary with a lot of empty slots, we want to skip them efficiently. We can do this using same binary index that is used for random key selection, this index allows us to find a slot for a specific key index. For example if there are 10 keys in the slot 0, then we can quickly find a slot that contains 11th key using binary search on top of the binary index tree. * scan API - in order to perform a scan across the entire DB, the cursor now needs to not only save position within the dictionary but also the slot id. In this change we append slot id into LSB of the cursor so it can be passed around between client and the server. This has interesting side effect, now you'll be able to start scanning specific slot by simply providing slot id as a cursor value. The plan is to not document this as defined behavior, however. It's also worth nothing the SCAN API is now technically incompatible with previous versions, although practically we don't believe it's an issue. * Checksum calculation optimizations - During command execution, we know that all of the keys are from the same slot (outside of a few notable exceptions such as cross slot scripts and modules). We don't want to compute the checksum multiple multiple times, hence we are relying on cached slot id in the client during the command executions. All operations that access random keys, either should pass in the known slot or recompute the slot. * Slot info in RDB - in order to resize individual dictionaries correctly, while loading RDB, it's not enough to know total number of keys (of course we could approximate number of keys per slot, but it won't be precise). To address this issue, we've added additional metadata into RDB that contains number of keys in each slot, which can be used as a hint during loading. * DB size - besides `DBSIZE` API, we need to know size of the DB in many places want, in order to avoid scanning all dictionaries and summing up their sizes in a loop, we've introduced a new field into `redisDb` that keeps track of `key_count`. This way we can keep DBSIZE operation O(1). This is also kept for O(1) expires computation as well. ## Performance This change improves SET performance in cluster mode by ~5%, most of the gains come from us not having to maintain linked lists for keys in slot, non-cluster mode has same performance. For workloads that rely on evictions, the performance is similar because of the extra overhead for finding keys to evict. RDB loading performance is slightly reduced, as the slot of each key needs to be computed during the load. ## Interface changes * Removed `overhead.hashtable.slot-to-keys` to `MEMORY STATS` * Scan API will now require 64 bits to store the cursor, even on 32 bit systems, as the slot information will be stored. * New RDB version to support the new op code for SLOT information. --------- Co-authored-by: Vitaly Arbuzov <arvit@amazon.com> Co-authored-by: Harkrishn Patro <harkrisp@amazon.com> Co-authored-by: Roshan Khatri <rvkhatri@amazon.com> Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2023-10-15 02:58:26 -04:00
test "expire scan should skip dictionaries with lot's of empty buckets" {
r debug set-active-expire 0
Replace cluster metadata with slot specific dictionaries (#11695) This is an implementation of https://github.com/redis/redis/issues/10589 that eliminates 16 bytes per entry in cluster mode, that are currently used to create a linked list between entries in the same slot. Main idea is splitting main dictionary into 16k smaller dictionaries (one per slot), so we can perform all slot specific operations, such as iteration, without any additional info in the `dictEntry`. For Redis cluster, the expectation is that there will be a larger number of keys, so the fixed overhead of 16k dictionaries will be The expire dictionary is also split up so that each slot is logically decoupled, so that in subsequent revisions we will be able to atomically flush a slot of data. ## Important changes * Incremental rehashing - one big change here is that it's not one, but rather up to 16k dictionaries that can be rehashing at the same time, in order to keep track of them, we introduce a separate queue for dictionaries that are rehashing. Also instead of rehashing a single dictionary, cron job will now try to rehash as many as it can in 1ms. * getRandomKey - now needs to not only select a random key, from the random bucket, but also needs to select a random dictionary. Fairness is a major concern here, as it's possible that keys can be unevenly distributed across the slots. In order to address this search we introduced binary index tree). With that data structure we are able to efficiently find a random slot using binary search in O(log^2(slot count)) time. * Iteration efficiency - when iterating dictionary with a lot of empty slots, we want to skip them efficiently. We can do this using same binary index that is used for random key selection, this index allows us to find a slot for a specific key index. For example if there are 10 keys in the slot 0, then we can quickly find a slot that contains 11th key using binary search on top of the binary index tree. * scan API - in order to perform a scan across the entire DB, the cursor now needs to not only save position within the dictionary but also the slot id. In this change we append slot id into LSB of the cursor so it can be passed around between client and the server. This has interesting side effect, now you'll be able to start scanning specific slot by simply providing slot id as a cursor value. The plan is to not document this as defined behavior, however. It's also worth nothing the SCAN API is now technically incompatible with previous versions, although practically we don't believe it's an issue. * Checksum calculation optimizations - During command execution, we know that all of the keys are from the same slot (outside of a few notable exceptions such as cross slot scripts and modules). We don't want to compute the checksum multiple multiple times, hence we are relying on cached slot id in the client during the command executions. All operations that access random keys, either should pass in the known slot or recompute the slot. * Slot info in RDB - in order to resize individual dictionaries correctly, while loading RDB, it's not enough to know total number of keys (of course we could approximate number of keys per slot, but it won't be precise). To address this issue, we've added additional metadata into RDB that contains number of keys in each slot, which can be used as a hint during loading. * DB size - besides `DBSIZE` API, we need to know size of the DB in many places want, in order to avoid scanning all dictionaries and summing up their sizes in a loop, we've introduced a new field into `redisDb` that keeps track of `key_count`. This way we can keep DBSIZE operation O(1). This is also kept for O(1) expires computation as well. ## Performance This change improves SET performance in cluster mode by ~5%, most of the gains come from us not having to maintain linked lists for keys in slot, non-cluster mode has same performance. For workloads that rely on evictions, the performance is similar because of the extra overhead for finding keys to evict. RDB loading performance is slightly reduced, as the slot of each key needs to be computed during the load. ## Interface changes * Removed `overhead.hashtable.slot-to-keys` to `MEMORY STATS` * Scan API will now require 64 bits to store the cursor, even on 32 bit systems, as the slot information will be stored. * New RDB version to support the new op code for SLOT information. --------- Co-authored-by: Vitaly Arbuzov <arvit@amazon.com> Co-authored-by: Harkrishn Patro <harkrisp@amazon.com> Co-authored-by: Roshan Khatri <rvkhatri@amazon.com> Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2023-10-15 02:58:26 -04:00
# Collect two slots to help determine the expiry scan logic is able
# to go past certain slots which aren't valid for scanning at the given point of time.
# And the next non empty slot after that still gets scanned and expiration happens.
Replace cluster metadata with slot specific dictionaries (#11695) This is an implementation of https://github.com/redis/redis/issues/10589 that eliminates 16 bytes per entry in cluster mode, that are currently used to create a linked list between entries in the same slot. Main idea is splitting main dictionary into 16k smaller dictionaries (one per slot), so we can perform all slot specific operations, such as iteration, without any additional info in the `dictEntry`. For Redis cluster, the expectation is that there will be a larger number of keys, so the fixed overhead of 16k dictionaries will be The expire dictionary is also split up so that each slot is logically decoupled, so that in subsequent revisions we will be able to atomically flush a slot of data. ## Important changes * Incremental rehashing - one big change here is that it's not one, but rather up to 16k dictionaries that can be rehashing at the same time, in order to keep track of them, we introduce a separate queue for dictionaries that are rehashing. Also instead of rehashing a single dictionary, cron job will now try to rehash as many as it can in 1ms. * getRandomKey - now needs to not only select a random key, from the random bucket, but also needs to select a random dictionary. Fairness is a major concern here, as it's possible that keys can be unevenly distributed across the slots. In order to address this search we introduced binary index tree). With that data structure we are able to efficiently find a random slot using binary search in O(log^2(slot count)) time. * Iteration efficiency - when iterating dictionary with a lot of empty slots, we want to skip them efficiently. We can do this using same binary index that is used for random key selection, this index allows us to find a slot for a specific key index. For example if there are 10 keys in the slot 0, then we can quickly find a slot that contains 11th key using binary search on top of the binary index tree. * scan API - in order to perform a scan across the entire DB, the cursor now needs to not only save position within the dictionary but also the slot id. In this change we append slot id into LSB of the cursor so it can be passed around between client and the server. This has interesting side effect, now you'll be able to start scanning specific slot by simply providing slot id as a cursor value. The plan is to not document this as defined behavior, however. It's also worth nothing the SCAN API is now technically incompatible with previous versions, although practically we don't believe it's an issue. * Checksum calculation optimizations - During command execution, we know that all of the keys are from the same slot (outside of a few notable exceptions such as cross slot scripts and modules). We don't want to compute the checksum multiple multiple times, hence we are relying on cached slot id in the client during the command executions. All operations that access random keys, either should pass in the known slot or recompute the slot. * Slot info in RDB - in order to resize individual dictionaries correctly, while loading RDB, it's not enough to know total number of keys (of course we could approximate number of keys per slot, but it won't be precise). To address this issue, we've added additional metadata into RDB that contains number of keys in each slot, which can be used as a hint during loading. * DB size - besides `DBSIZE` API, we need to know size of the DB in many places want, in order to avoid scanning all dictionaries and summing up their sizes in a loop, we've introduced a new field into `redisDb` that keeps track of `key_count`. This way we can keep DBSIZE operation O(1). This is also kept for O(1) expires computation as well. ## Performance This change improves SET performance in cluster mode by ~5%, most of the gains come from us not having to maintain linked lists for keys in slot, non-cluster mode has same performance. For workloads that rely on evictions, the performance is similar because of the extra overhead for finding keys to evict. RDB loading performance is slightly reduced, as the slot of each key needs to be computed during the load. ## Interface changes * Removed `overhead.hashtable.slot-to-keys` to `MEMORY STATS` * Scan API will now require 64 bits to store the cursor, even on 32 bit systems, as the slot information will be stored. * New RDB version to support the new op code for SLOT information. --------- Co-authored-by: Vitaly Arbuzov <arvit@amazon.com> Co-authored-by: Harkrishn Patro <harkrisp@amazon.com> Co-authored-by: Roshan Khatri <rvkhatri@amazon.com> Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2023-10-15 02:58:26 -04:00
# hashslot(alice) is 749
r psetex alice 500 val
# hashslot(foo) is 12182
# fill data across different slots with expiration
for {set j 1} {$j <= 100} {incr j} {
r psetex "{foo}$j" 500 a
}
# hashslot(key) is 12539
r psetex key 500 val
# disable resizing, the reason for not using slow bgsave is because
# it will hit the dict_force_resize_ratio.
r debug dict-resizing 0
Replace cluster metadata with slot specific dictionaries (#11695) This is an implementation of https://github.com/redis/redis/issues/10589 that eliminates 16 bytes per entry in cluster mode, that are currently used to create a linked list between entries in the same slot. Main idea is splitting main dictionary into 16k smaller dictionaries (one per slot), so we can perform all slot specific operations, such as iteration, without any additional info in the `dictEntry`. For Redis cluster, the expectation is that there will be a larger number of keys, so the fixed overhead of 16k dictionaries will be The expire dictionary is also split up so that each slot is logically decoupled, so that in subsequent revisions we will be able to atomically flush a slot of data. ## Important changes * Incremental rehashing - one big change here is that it's not one, but rather up to 16k dictionaries that can be rehashing at the same time, in order to keep track of them, we introduce a separate queue for dictionaries that are rehashing. Also instead of rehashing a single dictionary, cron job will now try to rehash as many as it can in 1ms. * getRandomKey - now needs to not only select a random key, from the random bucket, but also needs to select a random dictionary. Fairness is a major concern here, as it's possible that keys can be unevenly distributed across the slots. In order to address this search we introduced binary index tree). With that data structure we are able to efficiently find a random slot using binary search in O(log^2(slot count)) time. * Iteration efficiency - when iterating dictionary with a lot of empty slots, we want to skip them efficiently. We can do this using same binary index that is used for random key selection, this index allows us to find a slot for a specific key index. For example if there are 10 keys in the slot 0, then we can quickly find a slot that contains 11th key using binary search on top of the binary index tree. * scan API - in order to perform a scan across the entire DB, the cursor now needs to not only save position within the dictionary but also the slot id. In this change we append slot id into LSB of the cursor so it can be passed around between client and the server. This has interesting side effect, now you'll be able to start scanning specific slot by simply providing slot id as a cursor value. The plan is to not document this as defined behavior, however. It's also worth nothing the SCAN API is now technically incompatible with previous versions, although practically we don't believe it's an issue. * Checksum calculation optimizations - During command execution, we know that all of the keys are from the same slot (outside of a few notable exceptions such as cross slot scripts and modules). We don't want to compute the checksum multiple multiple times, hence we are relying on cached slot id in the client during the command executions. All operations that access random keys, either should pass in the known slot or recompute the slot. * Slot info in RDB - in order to resize individual dictionaries correctly, while loading RDB, it's not enough to know total number of keys (of course we could approximate number of keys per slot, but it won't be precise). To address this issue, we've added additional metadata into RDB that contains number of keys in each slot, which can be used as a hint during loading. * DB size - besides `DBSIZE` API, we need to know size of the DB in many places want, in order to avoid scanning all dictionaries and summing up their sizes in a loop, we've introduced a new field into `redisDb` that keeps track of `key_count`. This way we can keep DBSIZE operation O(1). This is also kept for O(1) expires computation as well. ## Performance This change improves SET performance in cluster mode by ~5%, most of the gains come from us not having to maintain linked lists for keys in slot, non-cluster mode has same performance. For workloads that rely on evictions, the performance is similar because of the extra overhead for finding keys to evict. RDB loading performance is slightly reduced, as the slot of each key needs to be computed during the load. ## Interface changes * Removed `overhead.hashtable.slot-to-keys` to `MEMORY STATS` * Scan API will now require 64 bits to store the cursor, even on 32 bit systems, as the slot information will be stored. * New RDB version to support the new op code for SLOT information. --------- Co-authored-by: Vitaly Arbuzov <arvit@amazon.com> Co-authored-by: Harkrishn Patro <harkrisp@amazon.com> Co-authored-by: Roshan Khatri <rvkhatri@amazon.com> Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2023-10-15 02:58:26 -04:00
# delete data to have lot's (99%) of empty buckets (slot 12182 should be skipped)
for {set j 1} {$j <= 99} {incr j} {
r del "{foo}$j"
}
# Trigger a full traversal of all dictionaries.
r keys *
r debug set-active-expire 1
# Verify {foo}100 still exists and remaining got cleaned up
Replace cluster metadata with slot specific dictionaries (#11695) This is an implementation of https://github.com/redis/redis/issues/10589 that eliminates 16 bytes per entry in cluster mode, that are currently used to create a linked list between entries in the same slot. Main idea is splitting main dictionary into 16k smaller dictionaries (one per slot), so we can perform all slot specific operations, such as iteration, without any additional info in the `dictEntry`. For Redis cluster, the expectation is that there will be a larger number of keys, so the fixed overhead of 16k dictionaries will be The expire dictionary is also split up so that each slot is logically decoupled, so that in subsequent revisions we will be able to atomically flush a slot of data. ## Important changes * Incremental rehashing - one big change here is that it's not one, but rather up to 16k dictionaries that can be rehashing at the same time, in order to keep track of them, we introduce a separate queue for dictionaries that are rehashing. Also instead of rehashing a single dictionary, cron job will now try to rehash as many as it can in 1ms. * getRandomKey - now needs to not only select a random key, from the random bucket, but also needs to select a random dictionary. Fairness is a major concern here, as it's possible that keys can be unevenly distributed across the slots. In order to address this search we introduced binary index tree). With that data structure we are able to efficiently find a random slot using binary search in O(log^2(slot count)) time. * Iteration efficiency - when iterating dictionary with a lot of empty slots, we want to skip them efficiently. We can do this using same binary index that is used for random key selection, this index allows us to find a slot for a specific key index. For example if there are 10 keys in the slot 0, then we can quickly find a slot that contains 11th key using binary search on top of the binary index tree. * scan API - in order to perform a scan across the entire DB, the cursor now needs to not only save position within the dictionary but also the slot id. In this change we append slot id into LSB of the cursor so it can be passed around between client and the server. This has interesting side effect, now you'll be able to start scanning specific slot by simply providing slot id as a cursor value. The plan is to not document this as defined behavior, however. It's also worth nothing the SCAN API is now technically incompatible with previous versions, although practically we don't believe it's an issue. * Checksum calculation optimizations - During command execution, we know that all of the keys are from the same slot (outside of a few notable exceptions such as cross slot scripts and modules). We don't want to compute the checksum multiple multiple times, hence we are relying on cached slot id in the client during the command executions. All operations that access random keys, either should pass in the known slot or recompute the slot. * Slot info in RDB - in order to resize individual dictionaries correctly, while loading RDB, it's not enough to know total number of keys (of course we could approximate number of keys per slot, but it won't be precise). To address this issue, we've added additional metadata into RDB that contains number of keys in each slot, which can be used as a hint during loading. * DB size - besides `DBSIZE` API, we need to know size of the DB in many places want, in order to avoid scanning all dictionaries and summing up their sizes in a loop, we've introduced a new field into `redisDb` that keeps track of `key_count`. This way we can keep DBSIZE operation O(1). This is also kept for O(1) expires computation as well. ## Performance This change improves SET performance in cluster mode by ~5%, most of the gains come from us not having to maintain linked lists for keys in slot, non-cluster mode has same performance. For workloads that rely on evictions, the performance is similar because of the extra overhead for finding keys to evict. RDB loading performance is slightly reduced, as the slot of each key needs to be computed during the load. ## Interface changes * Removed `overhead.hashtable.slot-to-keys` to `MEMORY STATS` * Scan API will now require 64 bits to store the cursor, even on 32 bit systems, as the slot information will be stored. * New RDB version to support the new op code for SLOT information. --------- Co-authored-by: Vitaly Arbuzov <arvit@amazon.com> Co-authored-by: Harkrishn Patro <harkrisp@amazon.com> Co-authored-by: Roshan Khatri <rvkhatri@amazon.com> Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2023-10-15 02:58:26 -04:00
wait_for_condition 20 100 {
[r dbsize] eq 1
} else {
if {[r dbsize] eq 0} {
puts [r debug htstats 0]
Replace cluster metadata with slot specific dictionaries (#11695) This is an implementation of https://github.com/redis/redis/issues/10589 that eliminates 16 bytes per entry in cluster mode, that are currently used to create a linked list between entries in the same slot. Main idea is splitting main dictionary into 16k smaller dictionaries (one per slot), so we can perform all slot specific operations, such as iteration, without any additional info in the `dictEntry`. For Redis cluster, the expectation is that there will be a larger number of keys, so the fixed overhead of 16k dictionaries will be The expire dictionary is also split up so that each slot is logically decoupled, so that in subsequent revisions we will be able to atomically flush a slot of data. ## Important changes * Incremental rehashing - one big change here is that it's not one, but rather up to 16k dictionaries that can be rehashing at the same time, in order to keep track of them, we introduce a separate queue for dictionaries that are rehashing. Also instead of rehashing a single dictionary, cron job will now try to rehash as many as it can in 1ms. * getRandomKey - now needs to not only select a random key, from the random bucket, but also needs to select a random dictionary. Fairness is a major concern here, as it's possible that keys can be unevenly distributed across the slots. In order to address this search we introduced binary index tree). With that data structure we are able to efficiently find a random slot using binary search in O(log^2(slot count)) time. * Iteration efficiency - when iterating dictionary with a lot of empty slots, we want to skip them efficiently. We can do this using same binary index that is used for random key selection, this index allows us to find a slot for a specific key index. For example if there are 10 keys in the slot 0, then we can quickly find a slot that contains 11th key using binary search on top of the binary index tree. * scan API - in order to perform a scan across the entire DB, the cursor now needs to not only save position within the dictionary but also the slot id. In this change we append slot id into LSB of the cursor so it can be passed around between client and the server. This has interesting side effect, now you'll be able to start scanning specific slot by simply providing slot id as a cursor value. The plan is to not document this as defined behavior, however. It's also worth nothing the SCAN API is now technically incompatible with previous versions, although practically we don't believe it's an issue. * Checksum calculation optimizations - During command execution, we know that all of the keys are from the same slot (outside of a few notable exceptions such as cross slot scripts and modules). We don't want to compute the checksum multiple multiple times, hence we are relying on cached slot id in the client during the command executions. All operations that access random keys, either should pass in the known slot or recompute the slot. * Slot info in RDB - in order to resize individual dictionaries correctly, while loading RDB, it's not enough to know total number of keys (of course we could approximate number of keys per slot, but it won't be precise). To address this issue, we've added additional metadata into RDB that contains number of keys in each slot, which can be used as a hint during loading. * DB size - besides `DBSIZE` API, we need to know size of the DB in many places want, in order to avoid scanning all dictionaries and summing up their sizes in a loop, we've introduced a new field into `redisDb` that keeps track of `key_count`. This way we can keep DBSIZE operation O(1). This is also kept for O(1) expires computation as well. ## Performance This change improves SET performance in cluster mode by ~5%, most of the gains come from us not having to maintain linked lists for keys in slot, non-cluster mode has same performance. For workloads that rely on evictions, the performance is similar because of the extra overhead for finding keys to evict. RDB loading performance is slightly reduced, as the slot of each key needs to be computed during the load. ## Interface changes * Removed `overhead.hashtable.slot-to-keys` to `MEMORY STATS` * Scan API will now require 64 bits to store the cursor, even on 32 bit systems, as the slot information will be stored. * New RDB version to support the new op code for SLOT information. --------- Co-authored-by: Vitaly Arbuzov <arvit@amazon.com> Co-authored-by: Harkrishn Patro <harkrisp@amazon.com> Co-authored-by: Roshan Khatri <rvkhatri@amazon.com> Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2023-10-15 02:58:26 -04:00
fail "scan didn't handle slot skipping logic."
} else {
puts [r debug htstats 0]
Replace cluster metadata with slot specific dictionaries (#11695) This is an implementation of https://github.com/redis/redis/issues/10589 that eliminates 16 bytes per entry in cluster mode, that are currently used to create a linked list between entries in the same slot. Main idea is splitting main dictionary into 16k smaller dictionaries (one per slot), so we can perform all slot specific operations, such as iteration, without any additional info in the `dictEntry`. For Redis cluster, the expectation is that there will be a larger number of keys, so the fixed overhead of 16k dictionaries will be The expire dictionary is also split up so that each slot is logically decoupled, so that in subsequent revisions we will be able to atomically flush a slot of data. ## Important changes * Incremental rehashing - one big change here is that it's not one, but rather up to 16k dictionaries that can be rehashing at the same time, in order to keep track of them, we introduce a separate queue for dictionaries that are rehashing. Also instead of rehashing a single dictionary, cron job will now try to rehash as many as it can in 1ms. * getRandomKey - now needs to not only select a random key, from the random bucket, but also needs to select a random dictionary. Fairness is a major concern here, as it's possible that keys can be unevenly distributed across the slots. In order to address this search we introduced binary index tree). With that data structure we are able to efficiently find a random slot using binary search in O(log^2(slot count)) time. * Iteration efficiency - when iterating dictionary with a lot of empty slots, we want to skip them efficiently. We can do this using same binary index that is used for random key selection, this index allows us to find a slot for a specific key index. For example if there are 10 keys in the slot 0, then we can quickly find a slot that contains 11th key using binary search on top of the binary index tree. * scan API - in order to perform a scan across the entire DB, the cursor now needs to not only save position within the dictionary but also the slot id. In this change we append slot id into LSB of the cursor so it can be passed around between client and the server. This has interesting side effect, now you'll be able to start scanning specific slot by simply providing slot id as a cursor value. The plan is to not document this as defined behavior, however. It's also worth nothing the SCAN API is now technically incompatible with previous versions, although practically we don't believe it's an issue. * Checksum calculation optimizations - During command execution, we know that all of the keys are from the same slot (outside of a few notable exceptions such as cross slot scripts and modules). We don't want to compute the checksum multiple multiple times, hence we are relying on cached slot id in the client during the command executions. All operations that access random keys, either should pass in the known slot or recompute the slot. * Slot info in RDB - in order to resize individual dictionaries correctly, while loading RDB, it's not enough to know total number of keys (of course we could approximate number of keys per slot, but it won't be precise). To address this issue, we've added additional metadata into RDB that contains number of keys in each slot, which can be used as a hint during loading. * DB size - besides `DBSIZE` API, we need to know size of the DB in many places want, in order to avoid scanning all dictionaries and summing up their sizes in a loop, we've introduced a new field into `redisDb` that keeps track of `key_count`. This way we can keep DBSIZE operation O(1). This is also kept for O(1) expires computation as well. ## Performance This change improves SET performance in cluster mode by ~5%, most of the gains come from us not having to maintain linked lists for keys in slot, non-cluster mode has same performance. For workloads that rely on evictions, the performance is similar because of the extra overhead for finding keys to evict. RDB loading performance is slightly reduced, as the slot of each key needs to be computed during the load. ## Interface changes * Removed `overhead.hashtable.slot-to-keys` to `MEMORY STATS` * Scan API will now require 64 bits to store the cursor, even on 32 bit systems, as the slot information will be stored. * New RDB version to support the new op code for SLOT information. --------- Co-authored-by: Vitaly Arbuzov <arvit@amazon.com> Co-authored-by: Harkrishn Patro <harkrisp@amazon.com> Co-authored-by: Roshan Khatri <rvkhatri@amazon.com> Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2023-10-15 02:58:26 -04:00
fail "scan didn't process all valid slots."
}
}
# Enable resizing
r debug dict-resizing 1
Replace cluster metadata with slot specific dictionaries (#11695) This is an implementation of https://github.com/redis/redis/issues/10589 that eliminates 16 bytes per entry in cluster mode, that are currently used to create a linked list between entries in the same slot. Main idea is splitting main dictionary into 16k smaller dictionaries (one per slot), so we can perform all slot specific operations, such as iteration, without any additional info in the `dictEntry`. For Redis cluster, the expectation is that there will be a larger number of keys, so the fixed overhead of 16k dictionaries will be The expire dictionary is also split up so that each slot is logically decoupled, so that in subsequent revisions we will be able to atomically flush a slot of data. ## Important changes * Incremental rehashing - one big change here is that it's not one, but rather up to 16k dictionaries that can be rehashing at the same time, in order to keep track of them, we introduce a separate queue for dictionaries that are rehashing. Also instead of rehashing a single dictionary, cron job will now try to rehash as many as it can in 1ms. * getRandomKey - now needs to not only select a random key, from the random bucket, but also needs to select a random dictionary. Fairness is a major concern here, as it's possible that keys can be unevenly distributed across the slots. In order to address this search we introduced binary index tree). With that data structure we are able to efficiently find a random slot using binary search in O(log^2(slot count)) time. * Iteration efficiency - when iterating dictionary with a lot of empty slots, we want to skip them efficiently. We can do this using same binary index that is used for random key selection, this index allows us to find a slot for a specific key index. For example if there are 10 keys in the slot 0, then we can quickly find a slot that contains 11th key using binary search on top of the binary index tree. * scan API - in order to perform a scan across the entire DB, the cursor now needs to not only save position within the dictionary but also the slot id. In this change we append slot id into LSB of the cursor so it can be passed around between client and the server. This has interesting side effect, now you'll be able to start scanning specific slot by simply providing slot id as a cursor value. The plan is to not document this as defined behavior, however. It's also worth nothing the SCAN API is now technically incompatible with previous versions, although practically we don't believe it's an issue. * Checksum calculation optimizations - During command execution, we know that all of the keys are from the same slot (outside of a few notable exceptions such as cross slot scripts and modules). We don't want to compute the checksum multiple multiple times, hence we are relying on cached slot id in the client during the command executions. All operations that access random keys, either should pass in the known slot or recompute the slot. * Slot info in RDB - in order to resize individual dictionaries correctly, while loading RDB, it's not enough to know total number of keys (of course we could approximate number of keys per slot, but it won't be precise). To address this issue, we've added additional metadata into RDB that contains number of keys in each slot, which can be used as a hint during loading. * DB size - besides `DBSIZE` API, we need to know size of the DB in many places want, in order to avoid scanning all dictionaries and summing up their sizes in a loop, we've introduced a new field into `redisDb` that keeps track of `key_count`. This way we can keep DBSIZE operation O(1). This is also kept for O(1) expires computation as well. ## Performance This change improves SET performance in cluster mode by ~5%, most of the gains come from us not having to maintain linked lists for keys in slot, non-cluster mode has same performance. For workloads that rely on evictions, the performance is similar because of the extra overhead for finding keys to evict. RDB loading performance is slightly reduced, as the slot of each key needs to be computed during the load. ## Interface changes * Removed `overhead.hashtable.slot-to-keys` to `MEMORY STATS` * Scan API will now require 64 bits to store the cursor, even on 32 bit systems, as the slot information will be stored. * New RDB version to support the new op code for SLOT information. --------- Co-authored-by: Vitaly Arbuzov <arvit@amazon.com> Co-authored-by: Harkrishn Patro <harkrisp@amazon.com> Co-authored-by: Roshan Khatri <rvkhatri@amazon.com> Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2023-10-15 02:58:26 -04:00
# put some data into slot 12182 and trigger the resize
r psetex "{foo}0" 500 a
# Verify all keys have expired
wait_for_condition 400 100 {
Replace cluster metadata with slot specific dictionaries (#11695) This is an implementation of https://github.com/redis/redis/issues/10589 that eliminates 16 bytes per entry in cluster mode, that are currently used to create a linked list between entries in the same slot. Main idea is splitting main dictionary into 16k smaller dictionaries (one per slot), so we can perform all slot specific operations, such as iteration, without any additional info in the `dictEntry`. For Redis cluster, the expectation is that there will be a larger number of keys, so the fixed overhead of 16k dictionaries will be The expire dictionary is also split up so that each slot is logically decoupled, so that in subsequent revisions we will be able to atomically flush a slot of data. ## Important changes * Incremental rehashing - one big change here is that it's not one, but rather up to 16k dictionaries that can be rehashing at the same time, in order to keep track of them, we introduce a separate queue for dictionaries that are rehashing. Also instead of rehashing a single dictionary, cron job will now try to rehash as many as it can in 1ms. * getRandomKey - now needs to not only select a random key, from the random bucket, but also needs to select a random dictionary. Fairness is a major concern here, as it's possible that keys can be unevenly distributed across the slots. In order to address this search we introduced binary index tree). With that data structure we are able to efficiently find a random slot using binary search in O(log^2(slot count)) time. * Iteration efficiency - when iterating dictionary with a lot of empty slots, we want to skip them efficiently. We can do this using same binary index that is used for random key selection, this index allows us to find a slot for a specific key index. For example if there are 10 keys in the slot 0, then we can quickly find a slot that contains 11th key using binary search on top of the binary index tree. * scan API - in order to perform a scan across the entire DB, the cursor now needs to not only save position within the dictionary but also the slot id. In this change we append slot id into LSB of the cursor so it can be passed around between client and the server. This has interesting side effect, now you'll be able to start scanning specific slot by simply providing slot id as a cursor value. The plan is to not document this as defined behavior, however. It's also worth nothing the SCAN API is now technically incompatible with previous versions, although practically we don't believe it's an issue. * Checksum calculation optimizations - During command execution, we know that all of the keys are from the same slot (outside of a few notable exceptions such as cross slot scripts and modules). We don't want to compute the checksum multiple multiple times, hence we are relying on cached slot id in the client during the command executions. All operations that access random keys, either should pass in the known slot or recompute the slot. * Slot info in RDB - in order to resize individual dictionaries correctly, while loading RDB, it's not enough to know total number of keys (of course we could approximate number of keys per slot, but it won't be precise). To address this issue, we've added additional metadata into RDB that contains number of keys in each slot, which can be used as a hint during loading. * DB size - besides `DBSIZE` API, we need to know size of the DB in many places want, in order to avoid scanning all dictionaries and summing up their sizes in a loop, we've introduced a new field into `redisDb` that keeps track of `key_count`. This way we can keep DBSIZE operation O(1). This is also kept for O(1) expires computation as well. ## Performance This change improves SET performance in cluster mode by ~5%, most of the gains come from us not having to maintain linked lists for keys in slot, non-cluster mode has same performance. For workloads that rely on evictions, the performance is similar because of the extra overhead for finding keys to evict. RDB loading performance is slightly reduced, as the slot of each key needs to be computed during the load. ## Interface changes * Removed `overhead.hashtable.slot-to-keys` to `MEMORY STATS` * Scan API will now require 64 bits to store the cursor, even on 32 bit systems, as the slot information will be stored. * New RDB version to support the new op code for SLOT information. --------- Co-authored-by: Vitaly Arbuzov <arvit@amazon.com> Co-authored-by: Harkrishn Patro <harkrisp@amazon.com> Co-authored-by: Roshan Khatri <rvkhatri@amazon.com> Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2023-10-15 02:58:26 -04:00
[r dbsize] eq 0
} else {
puts [r dbsize]
flush stdout
Replace cluster metadata with slot specific dictionaries (#11695) This is an implementation of https://github.com/redis/redis/issues/10589 that eliminates 16 bytes per entry in cluster mode, that are currently used to create a linked list between entries in the same slot. Main idea is splitting main dictionary into 16k smaller dictionaries (one per slot), so we can perform all slot specific operations, such as iteration, without any additional info in the `dictEntry`. For Redis cluster, the expectation is that there will be a larger number of keys, so the fixed overhead of 16k dictionaries will be The expire dictionary is also split up so that each slot is logically decoupled, so that in subsequent revisions we will be able to atomically flush a slot of data. ## Important changes * Incremental rehashing - one big change here is that it's not one, but rather up to 16k dictionaries that can be rehashing at the same time, in order to keep track of them, we introduce a separate queue for dictionaries that are rehashing. Also instead of rehashing a single dictionary, cron job will now try to rehash as many as it can in 1ms. * getRandomKey - now needs to not only select a random key, from the random bucket, but also needs to select a random dictionary. Fairness is a major concern here, as it's possible that keys can be unevenly distributed across the slots. In order to address this search we introduced binary index tree). With that data structure we are able to efficiently find a random slot using binary search in O(log^2(slot count)) time. * Iteration efficiency - when iterating dictionary with a lot of empty slots, we want to skip them efficiently. We can do this using same binary index that is used for random key selection, this index allows us to find a slot for a specific key index. For example if there are 10 keys in the slot 0, then we can quickly find a slot that contains 11th key using binary search on top of the binary index tree. * scan API - in order to perform a scan across the entire DB, the cursor now needs to not only save position within the dictionary but also the slot id. In this change we append slot id into LSB of the cursor so it can be passed around between client and the server. This has interesting side effect, now you'll be able to start scanning specific slot by simply providing slot id as a cursor value. The plan is to not document this as defined behavior, however. It's also worth nothing the SCAN API is now technically incompatible with previous versions, although practically we don't believe it's an issue. * Checksum calculation optimizations - During command execution, we know that all of the keys are from the same slot (outside of a few notable exceptions such as cross slot scripts and modules). We don't want to compute the checksum multiple multiple times, hence we are relying on cached slot id in the client during the command executions. All operations that access random keys, either should pass in the known slot or recompute the slot. * Slot info in RDB - in order to resize individual dictionaries correctly, while loading RDB, it's not enough to know total number of keys (of course we could approximate number of keys per slot, but it won't be precise). To address this issue, we've added additional metadata into RDB that contains number of keys in each slot, which can be used as a hint during loading. * DB size - besides `DBSIZE` API, we need to know size of the DB in many places want, in order to avoid scanning all dictionaries and summing up their sizes in a loop, we've introduced a new field into `redisDb` that keeps track of `key_count`. This way we can keep DBSIZE operation O(1). This is also kept for O(1) expires computation as well. ## Performance This change improves SET performance in cluster mode by ~5%, most of the gains come from us not having to maintain linked lists for keys in slot, non-cluster mode has same performance. For workloads that rely on evictions, the performance is similar because of the extra overhead for finding keys to evict. RDB loading performance is slightly reduced, as the slot of each key needs to be computed during the load. ## Interface changes * Removed `overhead.hashtable.slot-to-keys` to `MEMORY STATS` * Scan API will now require 64 bits to store the cursor, even on 32 bit systems, as the slot information will be stored. * New RDB version to support the new op code for SLOT information. --------- Co-authored-by: Vitaly Arbuzov <arvit@amazon.com> Co-authored-by: Harkrishn Patro <harkrisp@amazon.com> Co-authored-by: Roshan Khatri <rvkhatri@amazon.com> Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2023-10-15 02:58:26 -04:00
fail "Keys did not actively expire."
}
# Make sure we don't have any timeouts.
assert_equal 0 [s 0 expired_time_cap_reached_count]
} {} {needs:debug}
Replace cluster metadata with slot specific dictionaries (#11695) This is an implementation of https://github.com/redis/redis/issues/10589 that eliminates 16 bytes per entry in cluster mode, that are currently used to create a linked list between entries in the same slot. Main idea is splitting main dictionary into 16k smaller dictionaries (one per slot), so we can perform all slot specific operations, such as iteration, without any additional info in the `dictEntry`. For Redis cluster, the expectation is that there will be a larger number of keys, so the fixed overhead of 16k dictionaries will be The expire dictionary is also split up so that each slot is logically decoupled, so that in subsequent revisions we will be able to atomically flush a slot of data. ## Important changes * Incremental rehashing - one big change here is that it's not one, but rather up to 16k dictionaries that can be rehashing at the same time, in order to keep track of them, we introduce a separate queue for dictionaries that are rehashing. Also instead of rehashing a single dictionary, cron job will now try to rehash as many as it can in 1ms. * getRandomKey - now needs to not only select a random key, from the random bucket, but also needs to select a random dictionary. Fairness is a major concern here, as it's possible that keys can be unevenly distributed across the slots. In order to address this search we introduced binary index tree). With that data structure we are able to efficiently find a random slot using binary search in O(log^2(slot count)) time. * Iteration efficiency - when iterating dictionary with a lot of empty slots, we want to skip them efficiently. We can do this using same binary index that is used for random key selection, this index allows us to find a slot for a specific key index. For example if there are 10 keys in the slot 0, then we can quickly find a slot that contains 11th key using binary search on top of the binary index tree. * scan API - in order to perform a scan across the entire DB, the cursor now needs to not only save position within the dictionary but also the slot id. In this change we append slot id into LSB of the cursor so it can be passed around between client and the server. This has interesting side effect, now you'll be able to start scanning specific slot by simply providing slot id as a cursor value. The plan is to not document this as defined behavior, however. It's also worth nothing the SCAN API is now technically incompatible with previous versions, although practically we don't believe it's an issue. * Checksum calculation optimizations - During command execution, we know that all of the keys are from the same slot (outside of a few notable exceptions such as cross slot scripts and modules). We don't want to compute the checksum multiple multiple times, hence we are relying on cached slot id in the client during the command executions. All operations that access random keys, either should pass in the known slot or recompute the slot. * Slot info in RDB - in order to resize individual dictionaries correctly, while loading RDB, it's not enough to know total number of keys (of course we could approximate number of keys per slot, but it won't be precise). To address this issue, we've added additional metadata into RDB that contains number of keys in each slot, which can be used as a hint during loading. * DB size - besides `DBSIZE` API, we need to know size of the DB in many places want, in order to avoid scanning all dictionaries and summing up their sizes in a loop, we've introduced a new field into `redisDb` that keeps track of `key_count`. This way we can keep DBSIZE operation O(1). This is also kept for O(1) expires computation as well. ## Performance This change improves SET performance in cluster mode by ~5%, most of the gains come from us not having to maintain linked lists for keys in slot, non-cluster mode has same performance. For workloads that rely on evictions, the performance is similar because of the extra overhead for finding keys to evict. RDB loading performance is slightly reduced, as the slot of each key needs to be computed during the load. ## Interface changes * Removed `overhead.hashtable.slot-to-keys` to `MEMORY STATS` * Scan API will now require 64 bits to store the cursor, even on 32 bit systems, as the slot information will be stored. * New RDB version to support the new op code for SLOT information. --------- Co-authored-by: Vitaly Arbuzov <arvit@amazon.com> Co-authored-by: Harkrishn Patro <harkrisp@amazon.com> Co-authored-by: Roshan Khatri <rvkhatri@amazon.com> Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2023-10-15 02:58:26 -04:00
}