redict/tests/unit/cluster.tcl

288 lines
9.8 KiB
Tcl
Raw Normal View History

# Primitive tests on cluster-enabled redis using redis-cli
source tests/support/cli.tcl
proc cluster_info {r field} {
if {[regexp "^$field:(.*?)\r\n" [$r cluster info] _ value]} {
set _ $value
}
}
# Provide easy access to CLUSTER INFO properties. Same semantic as "proc s".
proc csi {args} {
set level 0
if {[string is integer [lindex $args 0]]} {
set level [lindex $args 0]
set args [lrange $args 1 end]
}
cluster_info [srv $level "client"] [lindex $args 0]
}
# make sure the test infra won't use SELECT
set ::singledb 1
# cluster creation is complicated with TLS, and the current tests don't really need that coverage
tags {tls:skip external:skip cluster} {
# start three servers
set base_conf [list cluster-enabled yes cluster-node-timeout 1]
start_multiple_servers 3 [list overrides $base_conf] {
set node1 [srv 0 client]
set node2 [srv -1 client]
set node3 [srv -2 client]
set node3_pid [srv -2 pid]
set node3_rd [redis_deferring_client -2]
test {Create 3 node cluster} {
exec src/redis-cli --cluster-yes --cluster create \
127.0.0.1:[srv 0 port] \
127.0.0.1:[srv -1 port] \
127.0.0.1:[srv -2 port]
wait_for_condition 1000 50 {
[csi 0 cluster_state] eq {ok} &&
[csi -1 cluster_state] eq {ok} &&
[csi -2 cluster_state] eq {ok}
} else {
fail "Cluster doesn't stabilize"
}
}
test "Run blocking command on cluster node3" {
# key9184688 is mapped to slot 10923 (first slot of node 3)
$node3_rd brpop key9184688 0
$node3_rd flush
wait_for_condition 50 100 {
[s -2 blocked_clients] eq {1}
} else {
fail "Client not blocked"
}
}
test "Perform a Resharding" {
exec src/redis-cli --cluster-yes --cluster reshard 127.0.0.1:[srv -2 port] \
--cluster-to [$node1 cluster myid] \
--cluster-from [$node3 cluster myid] \
--cluster-slots 1
}
test "Verify command got unblocked after resharding" {
# this (read) will wait for the node3 to realize the new topology
assert_error {*MOVED*} {$node3_rd read}
# verify there are no blocked clients
assert_equal [s 0 blocked_clients] {0}
assert_equal [s -1 blocked_clients] {0}
assert_equal [s -2 blocked_clients] {0}
}
test "Wait for cluster to be stable" {
wait_for_condition 1000 50 {
[catch {exec src/redis-cli --cluster \
check 127.0.0.1:[srv 0 port] \
}] == 0
} else {
fail "Cluster doesn't stabilize"
}
}
set node1_rd [redis_deferring_client 0]
test "Sanity test push cmd after resharding" {
assert_error {*MOVED*} {$node3 lpush key9184688 v1}
$node1_rd brpop key9184688 0
$node1_rd flush
wait_for_condition 50 100 {
[s 0 blocked_clients] eq {1}
} else {
puts "Client not blocked"
puts "read from blocked client: [$node1_rd read]"
fail "Client not blocked"
}
$node1 lpush key9184688 v2
assert_equal {key9184688 v2} [$node1_rd read]
}
$node3_rd close
test "Run blocking command again on cluster node1" {
$node1 del key9184688
# key9184688 is mapped to slot 10923 which has been moved to node1
$node1_rd brpop key9184688 0
$node1_rd flush
wait_for_condition 50 100 {
[s 0 blocked_clients] eq {1}
} else {
fail "Client not blocked"
}
}
test "Kill a cluster node and wait for fail state" {
# kill node3 in cluster
exec kill -SIGSTOP $node3_pid
wait_for_condition 1000 50 {
[csi 0 cluster_state] eq {fail} &&
[csi -1 cluster_state] eq {fail}
} else {
fail "Cluster doesn't fail"
}
}
test "Verify command got unblocked after cluster failure" {
assert_error {*CLUSTERDOWN*} {$node1_rd read}
# verify there are no blocked clients
assert_equal [s 0 blocked_clients] {0}
assert_equal [s -1 blocked_clients] {0}
}
exec kill -SIGCONT $node3_pid
$node1_rd close
} ;# stop servers
# Test redis-cli -- cluster create, add-node, call.
# Test that functions are propagated on add-node
start_multiple_servers 5 [list overrides $base_conf] {
set node4_rd [redis_client -3]
set node5_rd [redis_client -4]
test {Functions are added to new node on redis-cli cluster add-node} {
exec src/redis-cli --cluster-yes --cluster create \
127.0.0.1:[srv 0 port] \
127.0.0.1:[srv -1 port] \
127.0.0.1:[srv -2 port]
wait_for_condition 1000 50 {
[csi 0 cluster_state] eq {ok} &&
[csi -1 cluster_state] eq {ok} &&
[csi -2 cluster_state] eq {ok}
} else {
fail "Cluster doesn't stabilize"
}
# upload a function to all the cluster
exec src/redis-cli --cluster-yes --cluster call 127.0.0.1:[srv 0 port] \
Redis Function Libraries (#10004) # Redis Function Libraries This PR implements Redis Functions Libraries as describe on: https://github.com/redis/redis/issues/9906. Libraries purpose is to provide a better code sharing between functions by allowing to create multiple functions in a single command. Functions that were created together can safely share code between each other without worrying about compatibility issues and versioning. Creating a new library is done using 'FUNCTION LOAD' command (full API is described below) This PR introduces a new struct called libraryInfo, libraryInfo holds information about a library: * name - name of the library * engine - engine used to create the library * code - library code * description - library description * functions - the functions exposed by the library When Redis gets the `FUNCTION LOAD` command it creates a new empty libraryInfo. Redis passes the `CODE` to the relevant engine alongside the empty libraryInfo. As a result, the engine will create one or more functions by calling 'libraryCreateFunction'. The new funcion will be added to the newly created libraryInfo. So far Everything is happening locally on the libraryInfo so it is easy to abort the operation (in case of an error) by simply freeing the libraryInfo. After the library info is fully constructed we start the joining phase by which we will join the new library to the other libraries currently exist on Redis. The joining phase make sure there is no function collision and add the library to the librariesCtx (renamed from functionCtx). LibrariesCtx is used all around the code in the exact same way as functionCtx was used (with respect to RDB loading, replicatio, ...). The only difference is that apart from function dictionary (maps function name to functionInfo object), the librariesCtx contains also a libraries dictionary that maps library name to libraryInfo object. ## New API ### FUNCTION LOAD `FUNCTION LOAD <ENGINE> <LIBRARY NAME> [REPLACE] [DESCRIPTION <DESCRIPTION>] <CODE>` Create a new library with the given parameters: * ENGINE - REPLACE Engine name to use to create the library. * LIBRARY NAME - The new library name. * REPLACE - If the library already exists, replace it. * DESCRIPTION - Library description. * CODE - Library code. Return "OK" on success, or error on the following cases: * Library name already taken and REPLACE was not used * Name collision with another existing library (even if replace was uses) * Library registration failed by the engine (usually compilation error) ## Changed API ### FUNCTION LIST `FUNCTION LIST [LIBRARYNAME <LIBRARY NAME PATTERN>] [WITHCODE]` Command was modified to also allow getting libraries code (so `FUNCTION INFO` command is no longer needed and removed). In addition the command gets an option argument, `LIBRARYNAME` allows you to only get libraries that match the given `LIBRARYNAME` pattern. By default, it returns all libraries. ### INFO MEMORY Added number of libraries to `INFO MEMORY` ### Commands flags `DENYOOM` flag was set on `FUNCTION LOAD` and `FUNCTION RESTORE`. We consider those commands as commands that add new data to the dateset (functions are data) and so we want to disallows to run those commands on OOM. ## Removed API * FUNCTION CREATE - Decided on https://github.com/redis/redis/issues/9906 * FUNCTION INFO - Decided on https://github.com/redis/redis/issues/9899 ## Lua engine changes When the Lua engine gets the code given on `FUNCTION LOAD` command, it immediately runs it, we call this run the loading run. Loading run is not a usual script run, it is not possible to invoke any Redis command from within the load run. Instead there is a new API provided by `library` object. The new API's: * `redis.log` - behave the same as `redis.log` * `redis.register_function` - register a new function to the library The loading run purpose is to register functions using the new `redis.register_function` API. Any attempt to use any other API will result in an error. In addition, the load run is has a time limit of 500ms, error is raise on timeout and the entire operation is aborted. ### `redis.register_function` `redis.register_function(<function_name>, <callback>, [<description>])` This new API allows users to register a new function that will be linked to the newly created library. This API can only be called during the load run (see definition above). Any attempt to use it outside of the load run will result in an error. The parameters pass to the API are: * function_name - Function name (must be a Lua string) * callback - Lua function object that will be called when the function is invokes using fcall/fcall_ro * description - Function description, optional (must be a Lua string). ### Example The following example creates a library called `lib` with 2 functions, `f1` and `f1`, returns 1 and 2 respectively: ``` local function f1(keys, args)     return 1 end local function f2(keys, args)     return 2 end redis.register_function('f1', f1) redis.register_function('f2', f2) ``` Notice: Unlike `eval`, functions inside a library get the KEYS and ARGV as arguments to the functions and not as global. ### Technical Details On the load run we only want the user to be able to call a white list on API's. This way, in the future, if new API's will be added, the new API's will not be available to the load run unless specifically added to this white list. We put the while list on the `library` object and make sure the `library` object is only available to the load run by using [lua_setfenv](https://www.lua.org/manual/5.1/manual.html#lua_setfenv) API. This API allows us to set the `globals` of a function (and all the function it creates). Before starting the load run we create a new fresh Lua table (call it `g`) that only contains the `library` API (we make sure to set global protection on this table just like the general global protection already exists today), then we use [lua_setfenv](https://www.lua.org/manual/5.1/manual.html#lua_setfenv) to set `g` as the global table of the load run. After the load run finished we update `g` metatable and set `__index` and `__newindex` functions to be `_G` (Lua default globals), we also pop out the `library` object as we do not need it anymore. This way, any function that was created on the load run (and will be invoke using `fcall`) will see the default globals as it expected to see them and will not have the `library` API anymore. An important outcome of this new approach is that now we can achieve a distinct global table for each library (it is not yet like that but it is very easy to achieve it now). In the future we can decide to remove global protection because global on different libraries will not collide or we can chose to give different API to different libraries base on some configuration or input. Notice that this technique was meant to prevent errors and was not meant to prevent malicious user from exploit it. For example, the load run can still save the `library` object on some local variable and then using in `fcall` context. To prevent such a malicious use, the C code also make sure it is running in the right context and if not raise an error.
2022-01-06 06:39:38 -05:00
FUNCTION LOAD LUA TEST {redis.register_function('test', function() return 'hello' end)}
# adding node to the cluster
exec src/redis-cli --cluster-yes --cluster add-node \
127.0.0.1:[srv -3 port] \
127.0.0.1:[srv 0 port]
wait_for_condition 1000 50 {
[csi 0 cluster_state] eq {ok} &&
[csi -1 cluster_state] eq {ok} &&
[csi -2 cluster_state] eq {ok} &&
[csi -3 cluster_state] eq {ok}
} else {
fail "Cluster doesn't stabilize"
}
# make sure 'test' function was added to the new node
Function Flags support (no-writes, no-cluster, allow-state, allow-oom) (#10066) # Redis Functions Flags Following the discussion on #10025 Added Functions Flags support. The PR is divided to 2 sections: * Add named argument support to `redis.register_function` API. * Add support for function flags ## `redis.register_function` named argument support The first part of the PR adds support for named argument on `redis.register_function`, example: ``` redis.register_function{ function_name='f1', callback=function() return 'hello' end, description='some desc' } ``` The positional arguments is also kept, which means that it still possible to write: ``` redis.register_function('f1', function() return 'hello' end) ``` But notice that it is no longer possible to pass the optional description argument on the positional argument version. Positional argument was change to allow passing only the mandatory arguments (function name and callback). To pass more arguments the user must use the named argument version. As with positional arguments, the `function_name` and `callback` is mandatory and an error will be raise if those are missing. Also, an error will be raise if an unknown argument name is given or the arguments type is wrong. Tests was added to verify the new syntax. ## Functions Flags The second part of the PR is adding functions flags support. Flags are given to Redis when the engine calls `functionLibCreateFunction`, supported flags are: * `no-writes` - indicating the function perform no writes which means that it is OK to run it on: * read-only replica * Using FCALL_RO * If disk error detected It will not be possible to run a function in those situations unless the function turns on the `no-writes` flag * `allow-oom` - indicate that its OK to run the function even if Redis is in OOM state, if the function will not turn on this flag it will not be possible to run it if OOM reached (even if the function declares `no-writes` and even if `fcall_ro` is used). If this flag is set, any command will be allow on OOM (even those that is marked with CMD_DENYOOM). The assumption is that this flag is for advance users that knows its meaning and understand what they are doing, and Redis trust them to not increase the memory usage. (e.g. it could be an INCR or a modification on an existing key, or a DEL command) * `allow-state` - indicate that its OK to run the function on stale replica, in this case we will also make sure the function is only perform `stale` commands and raise an error if not. * `no-cluster` - indicate to disallow running the function if cluster is enabled. Default behaviure of functions (if no flags is given): 1. Allow functions to read and write 2. Do not run functions on OOM 3. Do not run functions on stale replica 4. Allow functions on cluster ### Lua API for functions flags On Lua engine, it is possible to give functions flags as `flags` named argument: ``` redis.register_function{function_name='f1', callback=function() return 1 end, flags={'no-writes', 'allow-oom'}, description='description'} ``` The function flags argument must be a Lua table that contains all the requested flags, The following will result in an error: * Unknown flag * Wrong flag type Default behaviour is the same as if no flags are used. Tests were added to verify all flags functionality ## Additional changes * mark FCALL and FCALL_RO with CMD_STALE flag (unlike EVAL), so that they can run if the function was registered with the `allow-stale` flag. * Verify `CMD_STALE` on `scriptCall` (`redis.call`), so it will not be possible to call commands from script while stale unless the command is marked with the `CMD_STALE` flags. so that even if the function is allowed while stale we do not allow it to bypass the `CMD_STALE` flag of commands. * Flags section was added to `FUNCTION LIST` command to provide the set of flags for each function: ``` > FUNCTION list withcode 1) 1) "library_name" 2) "test" 3) "engine" 4) "LUA" 5) "description" 6) (nil) 7) "functions" 8) 1) 1) "name" 2) "f1" 3) "description" 4) (nil) 5) "flags" 6) (empty array) 9) "library_code" 10) "redis.register_function{function_name='f1', callback=function() return 1 end}" ``` * Added API to get Redis version from within a script, The redis version can be provided using: 1. `redis.REDIS_VERSION` - string representation of the redis version in the format of MAJOR.MINOR.PATH 2. `redis.REDIS_VERSION_NUM` - number representation of the redis version in the format of `0x00MMmmpp` (`MM` - major, `mm` - minor, `pp` - patch). The number version can be used to check if version is greater or less another version. The string version can be used to return to the user or print as logs. This new API is provided to eval scripts and functions, it also possible to use this API during functions loading phase.
2022-01-14 07:02:02 -05:00
assert_equal {{library_name TEST engine LUA description {} functions {{name test description {} flags {}}}}} [$node4_rd FUNCTION LIST]
# add function to node 5
Redis Function Libraries (#10004) # Redis Function Libraries This PR implements Redis Functions Libraries as describe on: https://github.com/redis/redis/issues/9906. Libraries purpose is to provide a better code sharing between functions by allowing to create multiple functions in a single command. Functions that were created together can safely share code between each other without worrying about compatibility issues and versioning. Creating a new library is done using 'FUNCTION LOAD' command (full API is described below) This PR introduces a new struct called libraryInfo, libraryInfo holds information about a library: * name - name of the library * engine - engine used to create the library * code - library code * description - library description * functions - the functions exposed by the library When Redis gets the `FUNCTION LOAD` command it creates a new empty libraryInfo. Redis passes the `CODE` to the relevant engine alongside the empty libraryInfo. As a result, the engine will create one or more functions by calling 'libraryCreateFunction'. The new funcion will be added to the newly created libraryInfo. So far Everything is happening locally on the libraryInfo so it is easy to abort the operation (in case of an error) by simply freeing the libraryInfo. After the library info is fully constructed we start the joining phase by which we will join the new library to the other libraries currently exist on Redis. The joining phase make sure there is no function collision and add the library to the librariesCtx (renamed from functionCtx). LibrariesCtx is used all around the code in the exact same way as functionCtx was used (with respect to RDB loading, replicatio, ...). The only difference is that apart from function dictionary (maps function name to functionInfo object), the librariesCtx contains also a libraries dictionary that maps library name to libraryInfo object. ## New API ### FUNCTION LOAD `FUNCTION LOAD <ENGINE> <LIBRARY NAME> [REPLACE] [DESCRIPTION <DESCRIPTION>] <CODE>` Create a new library with the given parameters: * ENGINE - REPLACE Engine name to use to create the library. * LIBRARY NAME - The new library name. * REPLACE - If the library already exists, replace it. * DESCRIPTION - Library description. * CODE - Library code. Return "OK" on success, or error on the following cases: * Library name already taken and REPLACE was not used * Name collision with another existing library (even if replace was uses) * Library registration failed by the engine (usually compilation error) ## Changed API ### FUNCTION LIST `FUNCTION LIST [LIBRARYNAME <LIBRARY NAME PATTERN>] [WITHCODE]` Command was modified to also allow getting libraries code (so `FUNCTION INFO` command is no longer needed and removed). In addition the command gets an option argument, `LIBRARYNAME` allows you to only get libraries that match the given `LIBRARYNAME` pattern. By default, it returns all libraries. ### INFO MEMORY Added number of libraries to `INFO MEMORY` ### Commands flags `DENYOOM` flag was set on `FUNCTION LOAD` and `FUNCTION RESTORE`. We consider those commands as commands that add new data to the dateset (functions are data) and so we want to disallows to run those commands on OOM. ## Removed API * FUNCTION CREATE - Decided on https://github.com/redis/redis/issues/9906 * FUNCTION INFO - Decided on https://github.com/redis/redis/issues/9899 ## Lua engine changes When the Lua engine gets the code given on `FUNCTION LOAD` command, it immediately runs it, we call this run the loading run. Loading run is not a usual script run, it is not possible to invoke any Redis command from within the load run. Instead there is a new API provided by `library` object. The new API's: * `redis.log` - behave the same as `redis.log` * `redis.register_function` - register a new function to the library The loading run purpose is to register functions using the new `redis.register_function` API. Any attempt to use any other API will result in an error. In addition, the load run is has a time limit of 500ms, error is raise on timeout and the entire operation is aborted. ### `redis.register_function` `redis.register_function(<function_name>, <callback>, [<description>])` This new API allows users to register a new function that will be linked to the newly created library. This API can only be called during the load run (see definition above). Any attempt to use it outside of the load run will result in an error. The parameters pass to the API are: * function_name - Function name (must be a Lua string) * callback - Lua function object that will be called when the function is invokes using fcall/fcall_ro * description - Function description, optional (must be a Lua string). ### Example The following example creates a library called `lib` with 2 functions, `f1` and `f1`, returns 1 and 2 respectively: ``` local function f1(keys, args)     return 1 end local function f2(keys, args)     return 2 end redis.register_function('f1', f1) redis.register_function('f2', f2) ``` Notice: Unlike `eval`, functions inside a library get the KEYS and ARGV as arguments to the functions and not as global. ### Technical Details On the load run we only want the user to be able to call a white list on API's. This way, in the future, if new API's will be added, the new API's will not be available to the load run unless specifically added to this white list. We put the while list on the `library` object and make sure the `library` object is only available to the load run by using [lua_setfenv](https://www.lua.org/manual/5.1/manual.html#lua_setfenv) API. This API allows us to set the `globals` of a function (and all the function it creates). Before starting the load run we create a new fresh Lua table (call it `g`) that only contains the `library` API (we make sure to set global protection on this table just like the general global protection already exists today), then we use [lua_setfenv](https://www.lua.org/manual/5.1/manual.html#lua_setfenv) to set `g` as the global table of the load run. After the load run finished we update `g` metatable and set `__index` and `__newindex` functions to be `_G` (Lua default globals), we also pop out the `library` object as we do not need it anymore. This way, any function that was created on the load run (and will be invoke using `fcall`) will see the default globals as it expected to see them and will not have the `library` API anymore. An important outcome of this new approach is that now we can achieve a distinct global table for each library (it is not yet like that but it is very easy to achieve it now). In the future we can decide to remove global protection because global on different libraries will not collide or we can chose to give different API to different libraries base on some configuration or input. Notice that this technique was meant to prevent errors and was not meant to prevent malicious user from exploit it. For example, the load run can still save the `library` object on some local variable and then using in `fcall` context. To prevent such a malicious use, the C code also make sure it is running in the right context and if not raise an error.
2022-01-06 06:39:38 -05:00
assert_equal {OK} [$node5_rd FUNCTION LOAD LUA TEST {redis.register_function('test', function() return 'hello' end)}]
# make sure functions was added to node 5
Function Flags support (no-writes, no-cluster, allow-state, allow-oom) (#10066) # Redis Functions Flags Following the discussion on #10025 Added Functions Flags support. The PR is divided to 2 sections: * Add named argument support to `redis.register_function` API. * Add support for function flags ## `redis.register_function` named argument support The first part of the PR adds support for named argument on `redis.register_function`, example: ``` redis.register_function{ function_name='f1', callback=function() return 'hello' end, description='some desc' } ``` The positional arguments is also kept, which means that it still possible to write: ``` redis.register_function('f1', function() return 'hello' end) ``` But notice that it is no longer possible to pass the optional description argument on the positional argument version. Positional argument was change to allow passing only the mandatory arguments (function name and callback). To pass more arguments the user must use the named argument version. As with positional arguments, the `function_name` and `callback` is mandatory and an error will be raise if those are missing. Also, an error will be raise if an unknown argument name is given or the arguments type is wrong. Tests was added to verify the new syntax. ## Functions Flags The second part of the PR is adding functions flags support. Flags are given to Redis when the engine calls `functionLibCreateFunction`, supported flags are: * `no-writes` - indicating the function perform no writes which means that it is OK to run it on: * read-only replica * Using FCALL_RO * If disk error detected It will not be possible to run a function in those situations unless the function turns on the `no-writes` flag * `allow-oom` - indicate that its OK to run the function even if Redis is in OOM state, if the function will not turn on this flag it will not be possible to run it if OOM reached (even if the function declares `no-writes` and even if `fcall_ro` is used). If this flag is set, any command will be allow on OOM (even those that is marked with CMD_DENYOOM). The assumption is that this flag is for advance users that knows its meaning and understand what they are doing, and Redis trust them to not increase the memory usage. (e.g. it could be an INCR or a modification on an existing key, or a DEL command) * `allow-state` - indicate that its OK to run the function on stale replica, in this case we will also make sure the function is only perform `stale` commands and raise an error if not. * `no-cluster` - indicate to disallow running the function if cluster is enabled. Default behaviure of functions (if no flags is given): 1. Allow functions to read and write 2. Do not run functions on OOM 3. Do not run functions on stale replica 4. Allow functions on cluster ### Lua API for functions flags On Lua engine, it is possible to give functions flags as `flags` named argument: ``` redis.register_function{function_name='f1', callback=function() return 1 end, flags={'no-writes', 'allow-oom'}, description='description'} ``` The function flags argument must be a Lua table that contains all the requested flags, The following will result in an error: * Unknown flag * Wrong flag type Default behaviour is the same as if no flags are used. Tests were added to verify all flags functionality ## Additional changes * mark FCALL and FCALL_RO with CMD_STALE flag (unlike EVAL), so that they can run if the function was registered with the `allow-stale` flag. * Verify `CMD_STALE` on `scriptCall` (`redis.call`), so it will not be possible to call commands from script while stale unless the command is marked with the `CMD_STALE` flags. so that even if the function is allowed while stale we do not allow it to bypass the `CMD_STALE` flag of commands. * Flags section was added to `FUNCTION LIST` command to provide the set of flags for each function: ``` > FUNCTION list withcode 1) 1) "library_name" 2) "test" 3) "engine" 4) "LUA" 5) "description" 6) (nil) 7) "functions" 8) 1) 1) "name" 2) "f1" 3) "description" 4) (nil) 5) "flags" 6) (empty array) 9) "library_code" 10) "redis.register_function{function_name='f1', callback=function() return 1 end}" ``` * Added API to get Redis version from within a script, The redis version can be provided using: 1. `redis.REDIS_VERSION` - string representation of the redis version in the format of MAJOR.MINOR.PATH 2. `redis.REDIS_VERSION_NUM` - number representation of the redis version in the format of `0x00MMmmpp` (`MM` - major, `mm` - minor, `pp` - patch). The number version can be used to check if version is greater or less another version. The string version can be used to return to the user or print as logs. This new API is provided to eval scripts and functions, it also possible to use this API during functions loading phase.
2022-01-14 07:02:02 -05:00
assert_equal {{library_name TEST engine LUA description {} functions {{name test description {} flags {}}}}} [$node5_rd FUNCTION LIST]
# adding node 5 to the cluster should failed because it already contains the 'test' function
catch {
exec src/redis-cli --cluster-yes --cluster add-node \
127.0.0.1:[srv -4 port] \
127.0.0.1:[srv 0 port]
} e
assert_match {*node already contains functions*} $e
}
} ;# stop servers
# Test redis-cli --cluster create, add-node.
# Test that one slot can be migrated to and then away from the new node.
test {Migrate the last slot away from a node using redis-cli} {
start_multiple_servers 4 [list overrides $base_conf] {
# Create a cluster of 3 nodes
exec src/redis-cli --cluster-yes --cluster create \
127.0.0.1:[srv 0 port] \
127.0.0.1:[srv -1 port] \
127.0.0.1:[srv -2 port]
wait_for_condition 1000 50 {
[csi 0 cluster_state] eq {ok} &&
[csi -1 cluster_state] eq {ok} &&
[csi -2 cluster_state] eq {ok}
} else {
fail "Cluster doesn't stabilize"
}
# Insert some data
assert_equal OK [exec src/redis-cli -c -p [srv 0 port] SET foo bar]
set slot [exec src/redis-cli -c -p [srv 0 port] CLUSTER KEYSLOT foo]
# Add new node to the cluster
exec src/redis-cli --cluster-yes --cluster add-node \
127.0.0.1:[srv -3 port] \
127.0.0.1:[srv 0 port]
wait_for_condition 1000 50 {
[csi 0 cluster_state] eq {ok} &&
[csi -1 cluster_state] eq {ok} &&
[csi -2 cluster_state] eq {ok} &&
[csi -3 cluster_state] eq {ok}
} else {
fail "Cluster doesn't stabilize"
}
set newnode_r [redis_client -3]
set newnode_id [$newnode_r CLUSTER MYID]
# Find out which node has the key "foo" by asking the new node for a
# redirect.
catch { $newnode_r get foo } e
assert_match "MOVED $slot *" $e
lassign [split [lindex $e 2] :] owner_host owner_port
set owner_r [redis $owner_host $owner_port 0 $::tls]
set owner_id [$owner_r CLUSTER MYID]
# Move slot to new node using plain Redis commands
assert_equal OK [$newnode_r CLUSTER SETSLOT $slot IMPORTING $owner_id]
assert_equal OK [$owner_r CLUSTER SETSLOT $slot MIGRATING $newnode_id]
assert_equal {foo} [$owner_r CLUSTER GETKEYSINSLOT $slot 10]
assert_equal OK [$owner_r MIGRATE 127.0.0.1 [srv -3 port] "" 0 5000 KEYS foo]
assert_equal OK [$newnode_r CLUSTER SETSLOT $slot NODE $newnode_id]
assert_equal OK [$owner_r CLUSTER SETSLOT $slot NODE $newnode_id]
# Move the only slot back to original node using redis-cli
exec src/redis-cli --cluster reshard 127.0.0.1:[srv -3 port] \
--cluster-from $newnode_id \
--cluster-to $owner_id \
--cluster-slots 1 \
--cluster-yes
# Check that the key foo has been migrated back to the original owner.
catch { $newnode_r get foo } e
assert_equal "MOVED $slot $owner_host:$owner_port" $e
# Check that the empty node has turned itself into a replica of the new
# owner and that the new owner knows that.
wait_for_condition 5000 100 {
[string match "*slave*" [$owner_r CLUSTER REPLICAS $owner_id]]
} else {
fail "Empty node didn't turn itself into a replica."
}
}
}
} ;# tags