redict/src/module.c

4704 lines
182 KiB
C
Raw Normal View History

2016-10-06 08:48:21 +02:00
/*
* Copyright (c) 2016, Salvatore Sanfilippo <antirez at gmail dot com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
2016-03-06 13:44:24 +01:00
#include "server.h"
#include "cluster.h"
#include <dlfcn.h>
#define REDISMODULE_CORE 1
#include "redismodule.h"
/* --------------------------------------------------------------------------
* Private data structures used by the modules system. Those are data
* structures that are never exposed to Redis Modules, if not as void
* pointers that have an API the module can call with them)
* -------------------------------------------------------------------------- */
/* This structure represents a module inside the system. */
struct RedisModule {
void *handle; /* Module dlopen() handle. */
char *name; /* Module name. */
int ver; /* Module version. We use just progressive integers. */
int apiver; /* Module API version as requested during initialization.*/
list *types; /* Module data types. */
2016-03-06 13:44:24 +01:00
};
typedef struct RedisModule RedisModule;
static dict *modules; /* Hash table of modules. SDS -> RedisModule ptr.*/
/* Entries in the context->amqueue array, representing objects to free
* when the callback returns. */
struct AutoMemEntry {
void *ptr;
int type;
};
/* AutMemEntry type field values. */
#define REDISMODULE_AM_KEY 0
#define REDISMODULE_AM_STRING 1
#define REDISMODULE_AM_REPLY 2
#define REDISMODULE_AM_FREED 3 /* Explicitly freed by user already. */
/* The pool allocator block. Redis Modules can allocate memory via this special
* allocator that will automatically release it all once the callback returns.
* This means that it can only be used for ephemeral allocations. However
* there are two advantages for modules to use this API:
*
* 1) The memory is automatically released when the callback returns.
* 2) This allocator is faster for many small allocations since whole blocks
* are allocated, and small pieces returned to the caller just advancing
* the index of the allocation.
*
* Allocations are always rounded to the size of the void pointer in order
* to always return aligned memory chunks. */
#define REDISMODULE_POOL_ALLOC_MIN_SIZE (1024*8)
#define REDISMODULE_POOL_ALLOC_ALIGN (sizeof(void*))
typedef struct RedisModulePoolAllocBlock {
uint32_t size;
uint32_t used;
struct RedisModulePoolAllocBlock *next;
char memory[];
} RedisModulePoolAllocBlock;
2016-03-06 13:44:24 +01:00
/* This structure represents the context in which Redis modules operate.
* Most APIs module can access, get a pointer to the context, so that the API
* implementation can hold state across calls, or remember what to free after
* the call and so forth.
*
* Note that not all the context structure is always filled with actual values
* but only the fields needed in a given context. */
struct RedisModuleBlockedClient;
2016-03-06 13:44:24 +01:00
struct RedisModuleCtx {
void *getapifuncptr; /* NOTE: Must be the first field. */
struct RedisModule *module; /* Module reference. */
client *client; /* Client calling a command. */
struct RedisModuleBlockedClient *blocked_client; /* Blocked client for
thread safe context. */
2016-03-06 13:44:24 +01:00
struct AutoMemEntry *amqueue; /* Auto memory queue of objects to free. */
int amqueue_len; /* Number of slots in amqueue. */
int amqueue_used; /* Number of used slots in amqueue. */
int flags; /* REDISMODULE_CTX_... flags. */
2016-04-21 14:02:42 +02:00
void **postponed_arrays; /* To set with RM_ReplySetArrayLength(). */
int postponed_arrays_count; /* Number of entries in postponed_arrays. */
void *blocked_privdata; /* Privdata set when unblocking a client. */
/* Used if there is the REDISMODULE_CTX_KEYS_POS_REQUEST flag set. */
int *keys_pos;
int keys_count;
struct RedisModulePoolAllocBlock *pa_head;
2016-03-06 13:44:24 +01:00
};
typedef struct RedisModuleCtx RedisModuleCtx;
#define REDISMODULE_CTX_INIT {(void*)(unsigned long)&RM_GetApi, NULL, NULL, NULL, NULL, 0, 0, 0, NULL, 0, NULL, NULL, 0, NULL}
2016-03-06 13:44:24 +01:00
#define REDISMODULE_CTX_MULTI_EMITTED (1<<0)
#define REDISMODULE_CTX_AUTO_MEMORY (1<<1)
#define REDISMODULE_CTX_KEYS_POS_REQUEST (1<<2)
#define REDISMODULE_CTX_BLOCKED_REPLY (1<<3)
#define REDISMODULE_CTX_BLOCKED_TIMEOUT (1<<4)
#define REDISMODULE_CTX_THREAD_SAFE (1<<5)
#define REDISMODULE_CTX_BLOCKED_DISCONNECTED (1<<6)
2016-03-06 13:44:24 +01:00
/* This represents a Redis key opened with RM_OpenKey(). */
2016-03-06 13:44:24 +01:00
struct RedisModuleKey {
RedisModuleCtx *ctx;
redisDb *db;
robj *key; /* Key name object. */
robj *value; /* Value object, or NULL if the key was not found. */
void *iter; /* Iterator. */
int mode; /* Opening mode. */
2016-04-20 23:01:40 +02:00
2016-04-19 15:22:33 +02:00
/* Zset iterator. */
2016-04-20 23:01:40 +02:00
uint32_t ztype; /* REDISMODULE_ZSET_RANGE_* */
zrangespec zrs; /* Score range. */
zlexrangespec zlrs; /* Lex range. */
uint32_t zstart; /* Start pos for positional ranges. */
uint32_t zend; /* End pos for positional ranges. */
void *zcurrent; /* Zset iterator current node. */
int zer; /* Zset iterator end reached flag
(true if end was reached). */
2016-03-06 13:44:24 +01:00
};
typedef struct RedisModuleKey RedisModuleKey;
2016-04-20 23:01:40 +02:00
/* RedisModuleKey 'ztype' values. */
#define REDISMODULE_ZSET_RANGE_NONE 0 /* This must always be 0. */
#define REDISMODULE_ZSET_RANGE_LEX 1
#define REDISMODULE_ZSET_RANGE_SCORE 2
#define REDISMODULE_ZSET_RANGE_POS 3
2016-03-06 13:44:24 +01:00
/* Function pointer type of a function representing a command inside
* a Redis module. */
struct RedisModuleBlockedClient;
2016-03-06 13:44:24 +01:00
typedef int (*RedisModuleCmdFunc) (RedisModuleCtx *ctx, void **argv, int argc);
typedef void (*RedisModuleDisconnectFunc) (RedisModuleCtx *ctx, struct RedisModuleBlockedClient *bc);
2016-03-06 13:44:24 +01:00
/* This struct holds the information about a command registered by a module.*/
struct RedisModuleCommandProxy {
struct RedisModule *module;
RedisModuleCmdFunc func;
struct redisCommand *rediscmd;
};
typedef struct RedisModuleCommandProxy RedisModuleCommandProxy;
#define REDISMODULE_REPLYFLAG_NONE 0
#define REDISMODULE_REPLYFLAG_TOPARSE (1<<0) /* Protocol must be parsed. */
#define REDISMODULE_REPLYFLAG_NESTED (1<<1) /* Nested reply object. No proto
or struct free. */
/* Reply of RM_Call() function. The function is filled in a lazy
2016-03-06 13:44:24 +01:00
* way depending on the function called on the reply structure. By default
* only the type, proto and protolen are filled. */
typedef struct RedisModuleCallReply {
2016-03-06 13:44:24 +01:00
RedisModuleCtx *ctx;
int type; /* REDISMODULE_REPLY_... */
int flags; /* REDISMODULE_REPLYFLAG_... */
size_t len; /* Len of strings or num of elements of arrays. */
char *proto; /* Raw reply protocol. An SDS string at top-level object. */
size_t protolen;/* Length of protocol. */
union {
const char *str; /* String pointer for string and error replies. This
does not need to be freed, always points inside
a reply->proto buffer of the reply object or, in
case of array elements, of parent reply objects. */
long long ll; /* Reply value for integer reply. */
struct RedisModuleCallReply *array; /* Array of sub-reply elements. */
} val;
} RedisModuleCallReply;
2016-03-06 13:44:24 +01:00
/* Structure representing a blocked client. We get a pointer to such
* an object when blocking from modules. */
typedef struct RedisModuleBlockedClient {
client *client; /* Pointer to the blocked client. or NULL if the client
was destroyed during the life of this object. */
RedisModule *module; /* Module blocking the client. */
RedisModuleCmdFunc reply_callback; /* Reply callback on normal completion.*/
RedisModuleCmdFunc timeout_callback; /* Reply callback on timeout. */
RedisModuleDisconnectFunc disconnect_callback; /* Called on disconnection.*/
void (*free_privdata)(RedisModuleCtx*,void*);/* privdata cleanup callback.*/
void *privdata; /* Module private data that may be used by the reply
or timeout callback. It is set via the
RedisModule_UnblockClient() API. */
client *reply_client; /* Fake client used to accumulate replies
in thread safe contexts. */
int dbid; /* Database number selected by the original client. */
} RedisModuleBlockedClient;
static pthread_mutex_t moduleUnblockedClientsMutex = PTHREAD_MUTEX_INITIALIZER;
static list *moduleUnblockedClients;
/* We need a mutex that is unlocked / relocked in beforeSleep() in order to
* allow thread safe contexts to execute commands at a safe moment. */
static pthread_mutex_t moduleGIL = PTHREAD_MUTEX_INITIALIZER;
/* Function pointer type for keyspace event notification subscriptions from modules. */
typedef int (*RedisModuleNotificationFunc) (RedisModuleCtx *ctx, int type, const char *event, RedisModuleString *key);
/* Keyspace notification subscriber information.
* See RM_SubscribeToKeyspaceEvents() for more information. */
typedef struct RedisModuleKeyspaceSubscriber {
/* The module subscribed to the event */
RedisModule *module;
/* Notification callback in the module*/
RedisModuleNotificationFunc notify_callback;
/* A bit mask of the events the module is interested in */
int event_mask;
/* Active flag set on entry, to avoid reentrant subscribers
* calling themselves */
int active;
} RedisModuleKeyspaceSubscriber;
/* The module keyspace notification subscribers list */
static list *moduleKeyspaceSubscribers;
/* Static client recycled for all notification clients, to avoid allocating
* per round. */
static client *moduleKeyspaceSubscribersClient;
2016-03-06 13:44:24 +01:00
/* --------------------------------------------------------------------------
* Prototypes
* -------------------------------------------------------------------------- */
void RM_FreeCallReply(RedisModuleCallReply *reply);
void RM_CloseKey(RedisModuleKey *key);
void autoMemoryCollect(RedisModuleCtx *ctx);
2016-03-06 13:44:24 +01:00
robj **moduleCreateArgvFromUserFormat(const char *cmdname, const char *fmt, int *argcp, int *flags, va_list ap);
void moduleReplicateMultiIfNeeded(RedisModuleCtx *ctx);
void RM_ZsetRangeStop(RedisModuleKey *kp);
static void zsetKeyReset(RedisModuleKey *key);
2016-03-06 13:44:24 +01:00
/* --------------------------------------------------------------------------
* Heap allocation raw functions
* -------------------------------------------------------------------------- */
/* Use like malloc(). Memory allocated with this function is reported in
* Redis INFO memory, used for keys eviction according to maxmemory settings
* and in general is taken into account as memory allocated by Redis.
2016-06-22 17:32:41 +03:00
* You should avoid using malloc(). */
void *RM_Alloc(size_t bytes) {
return zmalloc(bytes);
}
2016-06-22 17:32:41 +03:00
/* Use like calloc(). Memory allocated with this function is reported in
* Redis INFO memory, used for keys eviction according to maxmemory settings
* and in general is taken into account as memory allocated by Redis.
* You should avoid using calloc() directly. */
void *RM_Calloc(size_t nmemb, size_t size) {
return zcalloc(nmemb*size);
}
/* Use like realloc() for memory obtained with RedisModule_Alloc(). */
void* RM_Realloc(void *ptr, size_t bytes) {
return zrealloc(ptr,bytes);
}
/* Use like free() for memory obtained by RedisModule_Alloc() and
* RedisModule_Realloc(). However you should never try to free with
* RedisModule_Free() memory allocated with malloc() inside your module. */
void RM_Free(void *ptr) {
zfree(ptr);
}
/* Like strdup() but returns memory allocated with RedisModule_Alloc(). */
char *RM_Strdup(const char *str) {
return zstrdup(str);
}
/* --------------------------------------------------------------------------
* Pool allocator
* -------------------------------------------------------------------------- */
/* Release the chain of blocks used for pool allocations. */
void poolAllocRelease(RedisModuleCtx *ctx) {
RedisModulePoolAllocBlock *head = ctx->pa_head, *next;
while(head != NULL) {
next = head->next;
zfree(head);
head = next;
}
ctx->pa_head = NULL;
}
/* Return heap allocated memory that will be freed automatically when the
* module callback function returns. Mostly suitable for small allocations
* that are short living and must be released when the callback returns
* anyway. The returned memory is aligned to the architecture word size
* if at least word size bytes are requested, otherwise it is just
* aligned to the next power of two, so for example a 3 bytes request is
* 4 bytes aligned while a 2 bytes request is 2 bytes aligned.
*
* There is no realloc style function since when this is needed to use the
* pool allocator is not a good idea.
*
* The function returns NULL if `bytes` is 0. */
void *RM_PoolAlloc(RedisModuleCtx *ctx, size_t bytes) {
if (bytes == 0) return NULL;
RedisModulePoolAllocBlock *b = ctx->pa_head;
size_t left = b ? b->size - b->used : 0;
/* Fix alignment. */
if (left >= bytes) {
size_t alignment = REDISMODULE_POOL_ALLOC_ALIGN;
while (bytes < alignment && alignment/2 >= bytes) alignment /= 2;
if (b->used % alignment)
b->used += alignment - (b->used % alignment);
left = (b->used > b->size) ? 0 : b->size - b->used;
}
/* Create a new block if needed. */
if (left < bytes) {
size_t blocksize = REDISMODULE_POOL_ALLOC_MIN_SIZE;
if (blocksize < bytes) blocksize = bytes;
b = zmalloc(sizeof(*b) + blocksize);
b->size = blocksize;
b->used = 0;
b->next = ctx->pa_head;
ctx->pa_head = b;
}
char *retval = b->memory + b->used;
b->used += bytes;
return retval;
}
2016-03-06 13:44:24 +01:00
/* --------------------------------------------------------------------------
* Helpers for modules API implementation
* -------------------------------------------------------------------------- */
/* Create an empty key of the specified type. 'kp' must point to a key object
* opened for writing where the .value member is set to NULL because the
* key was found to be non existing.
*
* On success REDISMODULE_OK is returned and the key is populated with
* the value of the specified type. The function fails and returns
* REDISMODULE_ERR if:
*
* 1) The key is not open for writing.
* 2) The key is not empty.
* 3) The specified type is unknown.
*/
2016-04-27 12:16:44 -07:00
int moduleCreateEmptyKey(RedisModuleKey *key, int type) {
2016-03-06 13:44:24 +01:00
robj *obj;
/* The key must be open for writing and non existing to proceed. */
if (!(key->mode & REDISMODULE_WRITE) || key->value)
return REDISMODULE_ERR;
switch(type) {
case REDISMODULE_KEYTYPE_LIST:
obj = createQuicklistObject();
quicklistSetOptions(obj->ptr, server.list_max_ziplist_size,
server.list_compress_depth);
break;
2016-04-14 12:49:16 +02:00
case REDISMODULE_KEYTYPE_ZSET:
obj = createZsetZiplistObject();
break;
2016-04-25 15:39:33 +02:00
case REDISMODULE_KEYTYPE_HASH:
obj = createHashObject();
break;
2016-03-06 13:44:24 +01:00
default: return REDISMODULE_ERR;
}
dbAdd(key->db,key->key,obj);
key->value = obj;
return REDISMODULE_OK;
}
/* This function is called in low-level API implementation functions in order
* to check if the value associated with the key remained empty after an
* operation that removed elements from an aggregate data type.
*
* If this happens, the key is deleted from the DB and the key object state
* is set to the right one in order to be targeted again by write operations
* possibly recreating the key if needed.
*
* The function returns 1 if the key value object is found empty and is
* deleted, otherwise 0 is returned. */
int moduleDelKeyIfEmpty(RedisModuleKey *key) {
if (!(key->mode & REDISMODULE_WRITE) || key->value == NULL) return 0;
int isempty;
robj *o = key->value;
switch(o->type) {
case OBJ_LIST: isempty = listTypeLength(o) == 0; break;
case OBJ_SET: isempty = setTypeSize(o) == 0; break;
case OBJ_ZSET: isempty = zsetLength(o) == 0; break;
case OBJ_HASH : isempty = hashTypeLength(o) == 0; break;
default: isempty = 0;
}
if (isempty) {
dbDelete(key->db,key->key);
key->value = NULL;
return 1;
} else {
return 0;
}
}
/* --------------------------------------------------------------------------
* Service API exported to modules
*
* Note that all the exported APIs are called RM_<funcname> in the core
* and RedisModule_<funcname> in the module side (defined as function
* pointers in redismodule.h). In this way the dynamic linker does not
* mess with our global function pointers, overriding it with the symbols
* defined in the main executable having the same names.
2016-03-06 13:44:24 +01:00
* -------------------------------------------------------------------------- */
/* Lookup the requested module API and store the function pointer into the
* target pointer. The function returns REDISMODULE_ERR if there is no such
* named API, otherwise REDISMODULE_OK.
*
* This function is not meant to be used by modules developer, it is only
* used implicitly by including redismodule.h. */
int RM_GetApi(const char *funcname, void **targetPtrPtr) {
2016-03-06 13:44:24 +01:00
dictEntry *he = dictFind(server.moduleapi, funcname);
if (!he) return REDISMODULE_ERR;
*targetPtrPtr = dictGetVal(he);
return REDISMODULE_OK;
}
2016-04-21 14:02:42 +02:00
/* Free the context after the user function was called. */
void moduleFreeContext(RedisModuleCtx *ctx) {
autoMemoryCollect(ctx);
poolAllocRelease(ctx);
2016-04-21 14:02:42 +02:00
if (ctx->postponed_arrays) {
zfree(ctx->postponed_arrays);
ctx->postponed_arrays_count = 0;
serverLog(LL_WARNING,
"API misuse detected in module %s: "
"RedisModule_ReplyWithArray(REDISMODULE_POSTPONED_ARRAY_LEN) "
"not matched by the same number of RedisModule_SetReplyArrayLen() "
"calls.",
ctx->module->name);
}
if (ctx->flags & REDISMODULE_CTX_THREAD_SAFE) freeClient(ctx->client);
2016-04-21 14:02:42 +02:00
}
/* Helper function for when a command callback is called, in order to handle
* details needed to correctly replicate commands. */
void moduleHandlePropagationAfterCommandCallback(RedisModuleCtx *ctx) {
client *c = ctx->client;
2016-03-06 13:44:24 +01:00
if (c->flags & CLIENT_LUA) return;
2016-03-06 13:44:24 +01:00
/* Handle the replication of the final EXEC, since whatever a command
* emits is always wrappered around MULTI/EXEC. */
if (ctx->flags & REDISMODULE_CTX_MULTI_EMITTED) {
2016-03-06 13:44:24 +01:00
robj *propargv[1];
propargv[0] = createStringObject("EXEC",4);
alsoPropagate(server.execCommand,c->db->id,propargv,1,
PROPAGATE_AOF|PROPAGATE_REPL);
decrRefCount(propargv[0]);
}
}
/* This Redis command binds the normal Redis command invocation with commands
* exported by modules. */
void RedisModuleCommandDispatcher(client *c) {
RedisModuleCommandProxy *cp = (void*)(unsigned long)c->cmd->getkeys_proc;
RedisModuleCtx ctx = REDISMODULE_CTX_INIT;
ctx.module = cp->module;
ctx.client = c;
cp->func(&ctx,(void**)c->argv,c->argc);
moduleHandlePropagationAfterCommandCallback(&ctx);
2016-04-21 14:02:42 +02:00
moduleFreeContext(&ctx);
2016-03-06 13:44:24 +01:00
}
/* This function returns the list of keys, with the same interface as the
* 'getkeys' function of the native commands, for module commands that exported
* the "getkeys-api" flag during the registration. This is done when the
* list of keys are not at fixed positions, so that first/last/step cannot
* be used.
*
* In order to accomplish its work, the module command is called, flagging
* the context in a way that the command can recognize this is a special
* "get keys" call by calling RedisModule_IsKeysPositionRequest(ctx). */
int *moduleGetCommandKeysViaAPI(struct redisCommand *cmd, robj **argv, int argc, int *numkeys) {
RedisModuleCommandProxy *cp = (void*)(unsigned long)cmd->getkeys_proc;
RedisModuleCtx ctx = REDISMODULE_CTX_INIT;
ctx.module = cp->module;
ctx.client = NULL;
ctx.flags |= REDISMODULE_CTX_KEYS_POS_REQUEST;
cp->func(&ctx,(void**)argv,argc);
int *res = ctx.keys_pos;
if (numkeys) *numkeys = ctx.keys_count;
moduleFreeContext(&ctx);
return res;
}
/* Return non-zero if a module command, that was declared with the
* flag "getkeys-api", is called in a special way to get the keys positions
* and not to get executed. Otherwise zero is returned. */
int RM_IsKeysPositionRequest(RedisModuleCtx *ctx) {
return (ctx->flags & REDISMODULE_CTX_KEYS_POS_REQUEST) != 0;
}
/* When a module command is called in order to obtain the position of
* keys, since it was flagged as "getkeys-api" during the registration,
* the command implementation checks for this special call using the
* RedisModule_IsKeysPositionRequest() API and uses this function in
* order to report keys, like in the following example:
*
* if (RedisModule_IsKeysPositionRequest(ctx)) {
* RedisModule_KeyAtPos(ctx,1);
* RedisModule_KeyAtPos(ctx,2);
* }
*
* Note: in the example below the get keys API would not be needed since
* keys are at fixed positions. This interface is only used for commands
* with a more complex structure. */
void RM_KeyAtPos(RedisModuleCtx *ctx, int pos) {
if (!(ctx->flags & REDISMODULE_CTX_KEYS_POS_REQUEST)) return;
if (pos <= 0) return;
ctx->keys_pos = zrealloc(ctx->keys_pos,sizeof(int)*(ctx->keys_count+1));
ctx->keys_pos[ctx->keys_count++] = pos;
}
2018-07-30 16:18:56 +03:00
/* Helper for RM_CreateCommand(). Turns a string representing command
* flags into the command flags used by the Redis core.
*
* It returns the set of flags, or -1 if unknown flags are found. */
int commandFlagsFromString(char *s) {
int count, j;
int flags = 0;
sds *tokens = sdssplitlen(s,strlen(s)," ",1,&count);
for (j = 0; j < count; j++) {
char *t = tokens[j];
if (!strcasecmp(t,"write")) flags |= CMD_WRITE;
else if (!strcasecmp(t,"readonly")) flags |= CMD_READONLY;
else if (!strcasecmp(t,"admin")) flags |= CMD_ADMIN;
else if (!strcasecmp(t,"deny-oom")) flags |= CMD_DENYOOM;
else if (!strcasecmp(t,"deny-script")) flags |= CMD_NOSCRIPT;
else if (!strcasecmp(t,"allow-loading")) flags |= CMD_LOADING;
else if (!strcasecmp(t,"pubsub")) flags |= CMD_PUBSUB;
else if (!strcasecmp(t,"random")) flags |= CMD_RANDOM;
else if (!strcasecmp(t,"allow-stale")) flags |= CMD_STALE;
else if (!strcasecmp(t,"no-monitor")) flags |= CMD_SKIP_MONITOR;
else if (!strcasecmp(t,"fast")) flags |= CMD_FAST;
else if (!strcasecmp(t,"getkeys-api")) flags |= CMD_MODULE_GETKEYS;
else if (!strcasecmp(t,"no-cluster")) flags |= CMD_MODULE_NO_CLUSTER;
else break;
}
sdsfreesplitres(tokens,count);
if (j != count) return -1; /* Some token not processed correctly. */
return flags;
}
2016-03-06 13:44:24 +01:00
/* Register a new command in the Redis server, that will be handled by
* calling the function pointer 'func' using the RedisModule calling
* convention. The function returns REDISMODULE_ERR if the specified command
* name is already busy or a set of invalid flags were passed, otherwise
* REDISMODULE_OK is returned and the new command is registered.
*
* This function must be called during the initialization of the module
* inside the RedisModule_OnLoad() function. Calling this function outside
* of the initialization function is not defined.
*
* The command function type is the following:
*
2016-05-10 18:54:58 +02:00
* int MyCommand_RedisCommand(RedisModuleCtx *ctx, RedisModuleString **argv, int argc);
*
* And is supposed to always return REDISMODULE_OK.
*
* The set of flags 'strflags' specify the behavior of the command, and should
2018-07-30 16:18:56 +03:00
* be passed as a C string composed of space separated words, like for
* example "write deny-oom". The set of flags are:
*
* * **"write"**: The command may modify the data set (it may also read
* from it).
* * **"readonly"**: The command returns data from keys but never writes.
* * **"admin"**: The command is an administrative command (may change
* replication or perform similar tasks).
* * **"deny-oom"**: The command may use additional memory and should be
* denied during out of memory conditions.
* * **"deny-script"**: Don't allow this command in Lua scripts.
* * **"allow-loading"**: Allow this command while the server is loading data.
* Only commands not interacting with the data set
* should be allowed to run in this mode. If not sure
* don't use this flag.
* * **"pubsub"**: The command publishes things on Pub/Sub channels.
* * **"random"**: The command may have different outputs even starting
* from the same input arguments and key values.
* * **"allow-stale"**: The command is allowed to run on slaves that don't
* serve stale data. Don't use if you don't know what
* this means.
2018-07-30 16:18:56 +03:00
* * **"no-monitor"**: Don't propagate the command on monitor. Use this if
* the command has sensible data among the arguments.
* * **"fast"**: The command time complexity is not greater
* than O(log(N)) where N is the size of the collection or
* anything else representing the normal scalability
* issue with the command.
* * **"getkeys-api"**: The command implements the interface to return
* the arguments that are keys. Used when start/stop/step
* is not enough because of the command syntax.
* * **"no-cluster"**: The command should not register in Redis Cluster
* since is not designed to work with it because, for
* example, is unable to report the position of the
* keys, programmatically creates key names, or any
* other reason.
*/
int RM_CreateCommand(RedisModuleCtx *ctx, const char *name, RedisModuleCmdFunc cmdfunc, const char *strflags, int firstkey, int lastkey, int keystep) {
int flags = strflags ? commandFlagsFromString((char*)strflags) : 0;
if (flags == -1) return REDISMODULE_ERR;
if ((flags & CMD_MODULE_NO_CLUSTER) && server.cluster_enabled)
return REDISMODULE_ERR;
2016-03-06 13:44:24 +01:00
struct redisCommand *rediscmd;
RedisModuleCommandProxy *cp;
sds cmdname = sdsnew(name);
/* Check if the command name is busy. */
if (lookupCommand(cmdname) != NULL) {
2016-03-06 13:44:24 +01:00
sdsfree(cmdname);
return REDISMODULE_ERR;
}
/* Create a command "proxy", which is a structure that is referenced
* in the command table, so that the generic command that works as
* binding between modules and Redis, can know what function to call
2016-03-06 13:44:24 +01:00
* and what the module is.
*
* Note that we use the Redis command table 'getkeys_proc' in order to
* pass a reference to the command proxy structure. */
cp = zmalloc(sizeof(*cp));
cp->module = ctx->module;
cp->func = cmdfunc;
cp->rediscmd = zmalloc(sizeof(*rediscmd));
cp->rediscmd->name = cmdname;
cp->rediscmd->proc = RedisModuleCommandDispatcher;
cp->rediscmd->arity = -1;
cp->rediscmd->flags = flags | CMD_MODULE;
cp->rediscmd->getkeys_proc = (redisGetKeysProc*)(unsigned long)cp;
cp->rediscmd->firstkey = firstkey;
cp->rediscmd->lastkey = lastkey;
cp->rediscmd->keystep = keystep;
2016-03-06 13:44:24 +01:00
cp->rediscmd->microseconds = 0;
cp->rediscmd->calls = 0;
dictAdd(server.commands,sdsdup(cmdname),cp->rediscmd);
dictAdd(server.orig_commands,sdsdup(cmdname),cp->rediscmd);
return REDISMODULE_OK;
}
2016-05-10 18:54:58 +02:00
/* Called by RM_Init() to setup the `ctx->module` structure.
*
* This is an internal function, Redis modules developers don't need
* to use it. */
2017-09-28 17:38:40 +08:00
void RM_SetModuleAttribs(RedisModuleCtx *ctx, const char *name, int ver, int apiver) {
2016-03-06 13:44:24 +01:00
RedisModule *module;
if (ctx->module != NULL) return;
module = zmalloc(sizeof(*module));
module->name = sdsnew((char*)name);
module->ver = ver;
module->apiver = apiver;
module->types = listCreate();
2016-03-06 13:44:24 +01:00
ctx->module = module;
}
2017-09-28 17:38:40 +08:00
/* Return non-zero if the module name is busy.
* Otherwise zero is returned. */
int RM_IsModuleNameBusy(const char *name) {
sds modulename = sdsnew(name);
dictEntry *de = dictFind(modules,modulename);
sdsfree(modulename);
return de != NULL;
2017-09-28 17:38:40 +08:00
}
2016-10-07 16:34:19 +02:00
/* Return the current UNIX time in milliseconds. */
long long RM_Milliseconds(void) {
return mstime();
}
2016-03-06 13:44:24 +01:00
/* --------------------------------------------------------------------------
* Automatic memory management for modules
* -------------------------------------------------------------------------- */
/* Enable automatic memory management. See API.md for more information.
*
* The function must be called as the first function of a command implementation
* that wants to use automatic memory. */
void RM_AutoMemory(RedisModuleCtx *ctx) {
2016-03-06 13:44:24 +01:00
ctx->flags |= REDISMODULE_CTX_AUTO_MEMORY;
}
/* Add a new object to release automatically when the callback returns. */
void autoMemoryAdd(RedisModuleCtx *ctx, int type, void *ptr) {
2016-03-06 13:44:24 +01:00
if (!(ctx->flags & REDISMODULE_CTX_AUTO_MEMORY)) return;
if (ctx->amqueue_used == ctx->amqueue_len) {
ctx->amqueue_len *= 2;
if (ctx->amqueue_len < 16) ctx->amqueue_len = 16;
ctx->amqueue = zrealloc(ctx->amqueue,sizeof(struct AutoMemEntry)*ctx->amqueue_len);
}
ctx->amqueue[ctx->amqueue_used].type = type;
ctx->amqueue[ctx->amqueue_used].ptr = ptr;
ctx->amqueue_used++;
}
/* Mark an object as freed in the auto release queue, so that users can still
* free things manually if they want.
*
* The function returns 1 if the object was actually found in the auto memory
* pool, otherwise 0 is returned. */
int autoMemoryFreed(RedisModuleCtx *ctx, int type, void *ptr) {
if (!(ctx->flags & REDISMODULE_CTX_AUTO_MEMORY)) return 0;
2016-03-06 13:44:24 +01:00
int count = (ctx->amqueue_used+1)/2;
for (int j = 0; j < count; j++) {
for (int side = 0; side < 2; side++) {
/* For side = 0 check right side of the array, for
* side = 1 check the left side instead (zig-zag scanning). */
int i = (side == 0) ? (ctx->amqueue_used - 1 - j) : j;
if (ctx->amqueue[i].type == type &&
ctx->amqueue[i].ptr == ptr)
{
ctx->amqueue[i].type = REDISMODULE_AM_FREED;
/* Switch the freed element and the last element, to avoid growing
* the queue unnecessarily if we allocate/free in a loop */
if (i != ctx->amqueue_used-1) {
ctx->amqueue[i] = ctx->amqueue[ctx->amqueue_used-1];
}
/* Reduce the size of the queue because we either moved the top
* element elsewhere or freed it */
ctx->amqueue_used--;
return 1;
2016-05-19 13:51:55 +03:00
}
2016-03-06 13:44:24 +01:00
}
}
return 0;
2016-03-06 13:44:24 +01:00
}
/* Release all the objects in queue. */
void autoMemoryCollect(RedisModuleCtx *ctx) {
2016-03-06 13:44:24 +01:00
if (!(ctx->flags & REDISMODULE_CTX_AUTO_MEMORY)) return;
/* Clear the AUTO_MEMORY flag from the context, otherwise the functions
* we call to free the resources, will try to scan the auto release
* queue to mark the entries as freed. */
ctx->flags &= ~REDISMODULE_CTX_AUTO_MEMORY;
int j;
for (j = 0; j < ctx->amqueue_used; j++) {
void *ptr = ctx->amqueue[j].ptr;
switch(ctx->amqueue[j].type) {
case REDISMODULE_AM_STRING: decrRefCount(ptr); break;
case REDISMODULE_AM_REPLY: RM_FreeCallReply(ptr); break;
case REDISMODULE_AM_KEY: RM_CloseKey(ptr); break;
2016-03-06 13:44:24 +01:00
}
}
ctx->flags |= REDISMODULE_CTX_AUTO_MEMORY;
zfree(ctx->amqueue);
ctx->amqueue = NULL;
ctx->amqueue_len = 0;
ctx->amqueue_used = 0;
}
/* --------------------------------------------------------------------------
* String objects APIs
* -------------------------------------------------------------------------- */
/* Create a new module string object. The returned string must be freed
* with RedisModule_FreeString(), unless automatic memory is enabled.
*
* The string is created by copying the `len` bytes starting
* at `ptr`. No reference is retained to the passed buffer. */
2016-09-21 12:30:38 +03:00
RedisModuleString *RM_CreateString(RedisModuleCtx *ctx, const char *ptr, size_t len) {
2016-03-06 13:44:24 +01:00
RedisModuleString *o = createStringObject(ptr,len);
autoMemoryAdd(ctx,REDISMODULE_AM_STRING,o);
2016-03-06 13:44:24 +01:00
return o;
}
2016-09-21 12:30:38 +03:00
2016-10-13 12:48:36 +02:00
/* Create a new module string object from a printf format and arguments.
* The returned string must be freed with RedisModule_FreeString(), unless
* automatic memory is enabled.
2016-09-21 12:30:38 +03:00
*
2016-10-13 12:48:36 +02:00
* The string is created using the sds formatter function sdscatvprintf(). */
2016-09-21 12:30:38 +03:00
RedisModuleString *RM_CreateStringPrintf(RedisModuleCtx *ctx, const char *fmt, ...) {
sds s = sdsempty();
va_list ap;
va_start(ap, fmt);
s = sdscatvprintf(s, fmt, ap);
va_end(ap);
RedisModuleString *o = createObject(OBJ_STRING, s);
autoMemoryAdd(ctx,REDISMODULE_AM_STRING,o);
return o;
}
/* Like RedisModule_CreatString(), but creates a string starting from a long long
* integer instead of taking a buffer and its length.
*
* The returned string must be released with RedisModule_FreeString() or by
* enabling automatic memory management. */
RedisModuleString *RM_CreateStringFromLongLong(RedisModuleCtx *ctx, long long ll) {
2016-03-06 13:44:24 +01:00
char buf[LONG_STR_SIZE];
size_t len = ll2string(buf,sizeof(buf),ll);
return RM_CreateString(ctx,buf,len);
2016-03-06 13:44:24 +01:00
}
/* Like RedisModule_CreatString(), but creates a string starting from another
* RedisModuleString.
*
* The returned string must be released with RedisModule_FreeString() or by
* enabling automatic memory management. */
RedisModuleString *RM_CreateStringFromString(RedisModuleCtx *ctx, const RedisModuleString *str) {
RedisModuleString *o = dupStringObject(str);
autoMemoryAdd(ctx,REDISMODULE_AM_STRING,o);
return o;
}
/* Free a module string object obtained with one of the Redis modules API calls
* that return new string objects.
*
* It is possible to call this function even when automatic memory management
* is enabled. In that case the string will be released ASAP and removed
* from the pool of string to release at the end. */
void RM_FreeString(RedisModuleCtx *ctx, RedisModuleString *str) {
2016-03-06 13:44:24 +01:00
decrRefCount(str);
autoMemoryFreed(ctx,REDISMODULE_AM_STRING,str);
2016-03-06 13:44:24 +01:00
}
/* Every call to this function, will make the string 'str' requiring
* an additional call to RedisModule_FreeString() in order to really
* free the string. Note that the automatic freeing of the string obtained
* enabling modules automatic memory management counts for one
* RedisModule_FreeString() call (it is just executed automatically).
*
* Normally you want to call this function when, at the same time
* the following conditions are true:
*
* 1) You have automatic memory management enabled.
* 2) You want to create string objects.
* 3) Those string objects you create need to live *after* the callback
* function(for example a command implementation) creating them returns.
*
* Usually you want this in order to store the created string object
* into your own data structure, for example when implementing a new data
* type.
*
* Note that when memory management is turned off, you don't need
* any call to RetainString() since creating a string will always result
* into a string that lives after the callback function returns, if
* no FreeString() call is performed. */
void RM_RetainString(RedisModuleCtx *ctx, RedisModuleString *str) {
if (!autoMemoryFreed(ctx,REDISMODULE_AM_STRING,str)) {
/* Increment the string reference counting only if we can't
* just remove the object from the list of objects that should
* be reclaimed. Why we do that, instead of just incrementing
* the refcount in any case, and let the automatic FreeString()
* call at the end to bring the refcount back at the desired
* value? Because this way we ensure that the object refcount
* value is 1 (instead of going to 2 to be dropped later to 1)
* after the call to this function. This is needed for functions
* like RedisModule_StringAppendBuffer() to work. */
incrRefCount(str);
}
}
/* Given a string module object, this function returns the string pointer
* and length of the string. The returned pointer and length should only
* be used for read only accesses and never modified. */
const char *RM_StringPtrLen(const RedisModuleString *str, size_t *len) {
if (str == NULL) {
const char *errmsg = "(NULL string reply referenced in module)";
if (len) *len = strlen(errmsg);
return errmsg;
}
2016-03-06 13:44:24 +01:00
if (len) *len = sdslen(str->ptr);
return str->ptr;
}
/* --------------------------------------------------------------------------
* Higher level string operations
* ------------------------------------------------------------------------- */
2016-05-10 18:54:58 +02:00
/* Convert the string into a long long integer, storing it at `*ll`.
2016-03-06 13:44:24 +01:00
* Returns REDISMODULE_OK on success. If the string can't be parsed
* as a valid, strict long long (no spaces before/after), REDISMODULE_ERR
* is returned. */
int RM_StringToLongLong(const RedisModuleString *str, long long *ll) {
2016-03-06 13:44:24 +01:00
return string2ll(str->ptr,sdslen(str->ptr),ll) ? REDISMODULE_OK :
REDISMODULE_ERR;
}
2016-05-10 18:54:58 +02:00
/* Convert the string into a double, storing it at `*d`.
2016-04-19 15:22:33 +02:00
* Returns REDISMODULE_OK on success or REDISMODULE_ERR if the string is
* not a valid string representation of a double value. */
int RM_StringToDouble(const RedisModuleString *str, double *d) {
2016-04-19 15:22:33 +02:00
int retval = getDoubleFromObject(str,d);
return (retval == C_OK) ? REDISMODULE_OK : REDISMODULE_ERR;
}
/* Compare two string objects, returning -1, 0 or 1 respectively if
* a < b, a == b, a > b. Strings are compared byte by byte as two
* binary blobs without any encoding care / collation attempt. */
int RM_StringCompare(RedisModuleString *a, RedisModuleString *b) {
return compareStringObjects(a,b);
}
/* Return the (possibly modified in encoding) input 'str' object if
* the string is unshared, otherwise NULL is returned. */
RedisModuleString *moduleAssertUnsharedString(RedisModuleString *str) {
if (str->refcount != 1) {
serverLog(LL_WARNING,
"Module attempted to use an in-place string modify operation "
"with a string referenced multiple times. Please check the code "
"for API usage correctness.");
return NULL;
}
if (str->encoding == OBJ_ENCODING_EMBSTR) {
/* Note: here we "leak" the additional allocation that was
* used in order to store the embedded string in the object. */
str->ptr = sdsnewlen(str->ptr,sdslen(str->ptr));
str->encoding = OBJ_ENCODING_RAW;
} else if (str->encoding == OBJ_ENCODING_INT) {
/* Convert the string from integer to raw encoding. */
str->ptr = sdsfromlonglong((long)str->ptr);
str->encoding = OBJ_ENCODING_RAW;
}
return str;
}
2018-07-30 16:18:56 +03:00
/* Append the specified buffer to the string 'str'. The string must be a
* string created by the user that is referenced only a single time, otherwise
2018-07-30 16:18:56 +03:00
* REDISMODULE_ERR is returned and the operation is not performed. */
int RM_StringAppendBuffer(RedisModuleCtx *ctx, RedisModuleString *str, const char *buf, size_t len) {
UNUSED(ctx);
str = moduleAssertUnsharedString(str);
if (str == NULL) return REDISMODULE_ERR;
str->ptr = sdscatlen(str->ptr,buf,len);
return REDISMODULE_OK;
}
2016-03-06 13:44:24 +01:00
/* --------------------------------------------------------------------------
* Reply APIs
*
* Most functions always return REDISMODULE_OK so you can use it with
* 'return' in order to return from the command implementation with:
*
* if (... some condition ...)
* return RM_ReplyWithLongLong(ctx,mycount);
2016-03-06 13:44:24 +01:00
* -------------------------------------------------------------------------- */
/* Send an error about the number of arguments given to the command,
* citing the command name in the error message.
*
* Example:
*
* if (argc != 3) return RedisModule_WrongArity(ctx);
*/
int RM_WrongArity(RedisModuleCtx *ctx) {
2016-03-06 13:44:24 +01:00
addReplyErrorFormat(ctx->client,
"wrong number of arguments for '%s' command",
(char*)ctx->client->argv[0]->ptr);
return REDISMODULE_OK;
}
/* Return the client object the `RM_Reply*` functions should target.
* Normally this is just `ctx->client`, that is the client that called
* the module command, however in the case of thread safe contexts there
* is no directly associated client (since it would not be safe to access
* the client from a thread), so instead the blocked client object referenced
* in the thread safe context, has a fake client that we just use to accumulate
* the replies. Later, when the client is unblocked, the accumulated replies
* are appended to the actual client.
*
* The function returns the client pointer depending on the context, or
* NULL if there is no potential client. This happens when we are in the
* context of a thread safe context that was not initialized with a blocked
* client object. Other contexts without associated clients are the ones
* initialized to run the timers callbacks. */
client *moduleGetReplyClient(RedisModuleCtx *ctx) {
if (ctx->flags & REDISMODULE_CTX_THREAD_SAFE) {
if (ctx->blocked_client)
return ctx->blocked_client->reply_client;
else
return NULL;
} else {
/* If this is a non thread safe context, just return the client
* that is running the command if any. This may be NULL as well
* in the case of contexts that are not executed with associated
* clients, like timer contexts. */
return ctx->client;
}
}
/* Send an integer reply to the client, with the specified long long value.
2016-03-06 13:44:24 +01:00
* The function always returns REDISMODULE_OK. */
int RM_ReplyWithLongLong(RedisModuleCtx *ctx, long long ll) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return REDISMODULE_OK;
addReplyLongLong(c,ll);
2016-03-06 13:44:24 +01:00
return REDISMODULE_OK;
}
/* Reply with an error or simple string (status message). Used to implement
* ReplyWithSimpleString() and ReplyWithError().
* The function always returns REDISMODULE_OK. */
int replyWithStatus(RedisModuleCtx *ctx, const char *msg, char *prefix) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return REDISMODULE_OK;
2016-03-06 13:44:24 +01:00
sds strmsg = sdsnewlen(prefix,1);
strmsg = sdscat(strmsg,msg);
strmsg = sdscatlen(strmsg,"\r\n",2);
addReplySds(c,strmsg);
2016-03-06 13:44:24 +01:00
return REDISMODULE_OK;
}
/* Reply with the error 'err'.
*
* Note that 'err' must contain all the error, including
* the initial error code. The function only provides the initial "-", so
* the usage is, for example:
*
* RedisModule_ReplyWithError(ctx,"ERR Wrong Type");
2016-03-06 13:44:24 +01:00
*
* and not just:
*
* RedisModule_ReplyWithError(ctx,"Wrong Type");
*
* The function always returns REDISMODULE_OK.
2016-03-06 13:44:24 +01:00
*/
int RM_ReplyWithError(RedisModuleCtx *ctx, const char *err) {
return replyWithStatus(ctx,err,"-");
2016-03-06 13:44:24 +01:00
}
/* Reply with a simple string (+... \r\n in RESP protocol). This replies
* are suitable only when sending a small non-binary string with small
* overhead, like "OK" or similar replies.
*
* The function always returns REDISMODULE_OK. */
int RM_ReplyWithSimpleString(RedisModuleCtx *ctx, const char *msg) {
return replyWithStatus(ctx,msg,"+");
2016-03-06 13:44:24 +01:00
}
/* Reply with an array type of 'len' elements. However 'len' other calls
2016-05-10 18:54:58 +02:00
* to `ReplyWith*` style functions must follow in order to emit the elements
* of the array.
*
2016-04-21 14:02:42 +02:00
* When producing arrays with a number of element that is not known beforehand
* the function can be called with the special count
* REDISMODULE_POSTPONED_ARRAY_LEN, and the actual number of elements can be
* later set with RedisModule_ReplySetArrayLength() (which will set the
* latest "open" count if there are multiple ones).
*
* The function always returns REDISMODULE_OK. */
2016-04-21 11:45:52 +02:00
int RM_ReplyWithArray(RedisModuleCtx *ctx, long len) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return REDISMODULE_OK;
2016-04-21 14:02:42 +02:00
if (len == REDISMODULE_POSTPONED_ARRAY_LEN) {
ctx->postponed_arrays = zrealloc(ctx->postponed_arrays,sizeof(void*)*
(ctx->postponed_arrays_count+1));
ctx->postponed_arrays[ctx->postponed_arrays_count] =
addDeferredMultiBulkLength(c);
2016-04-21 14:02:42 +02:00
ctx->postponed_arrays_count++;
} else {
addReplyMultiBulkLen(c,len);
2016-04-21 14:02:42 +02:00
}
2016-03-06 13:44:24 +01:00
return REDISMODULE_OK;
}
2016-04-21 14:02:42 +02:00
/* When RedisModule_ReplyWithArray() is used with the argument
* REDISMODULE_POSTPONED_ARRAY_LEN, because we don't know beforehand the number
* of items we are going to output as elements of the array, this function
* will take care to set the array length.
*
* Since it is possible to have multiple array replies pending with unknown
* length, this function guarantees to always set the latest array length
* that was created in a postponed way.
*
* For example in order to output an array like [1,[10,20,30]] we
* could write:
*
* RedisModule_ReplyWithArray(ctx,REDISMODULE_POSTPONED_ARRAY_LEN);
* RedisModule_ReplyWithLongLong(ctx,1);
* RedisModule_ReplyWithArray(ctx,REDISMODULE_POSTPONED_ARRAY_LEN);
* RedisModule_ReplyWithLongLong(ctx,10);
* RedisModule_ReplyWithLongLong(ctx,20);
* RedisModule_ReplyWithLongLong(ctx,30);
* RedisModule_ReplySetArrayLength(ctx,3); // Set len of 10,20,30 array.
* RedisModule_ReplySetArrayLength(ctx,2); // Set len of top array
2016-04-21 14:02:42 +02:00
*
* Note that in the above example there is no reason to postpone the array
* length, since we produce a fixed number of elements, but in the practice
2018-07-30 16:18:56 +03:00
* the code may use an iterator or other ways of creating the output so
2016-04-21 14:02:42 +02:00
* that is not easy to calculate in advance the number of elements.
*/
void RM_ReplySetArrayLength(RedisModuleCtx *ctx, long len) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return;
2016-04-21 14:02:42 +02:00
if (ctx->postponed_arrays_count == 0) {
serverLog(LL_WARNING,
"API misuse detected in module %s: "
"RedisModule_ReplySetArrayLength() called without previous "
"RedisModule_ReplyWithArray(ctx,REDISMODULE_POSTPONED_ARRAY_LEN) "
"call.", ctx->module->name);
return;
}
ctx->postponed_arrays_count--;
setDeferredMultiBulkLength(c,
2016-04-21 14:02:42 +02:00
ctx->postponed_arrays[ctx->postponed_arrays_count],
len);
if (ctx->postponed_arrays_count == 0) {
zfree(ctx->postponed_arrays);
ctx->postponed_arrays = NULL;
}
}
/* Reply with a bulk string, taking in input a C buffer pointer and length.
*
* The function always returns REDISMODULE_OK. */
int RM_ReplyWithStringBuffer(RedisModuleCtx *ctx, const char *buf, size_t len) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return REDISMODULE_OK;
addReplyBulkCBuffer(c,(char*)buf,len);
2016-03-06 13:44:24 +01:00
return REDISMODULE_OK;
}
/* Reply with a bulk string, taking in input a RedisModuleString object.
*
* The function always returns REDISMODULE_OK. */
int RM_ReplyWithString(RedisModuleCtx *ctx, RedisModuleString *str) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return REDISMODULE_OK;
addReplyBulk(c,str);
2016-03-06 13:44:24 +01:00
return REDISMODULE_OK;
}
/* Reply to the client with a NULL. In the RESP protocol a NULL is encoded
* as the string "$-1\r\n".
*
* The function always returns REDISMODULE_OK. */
int RM_ReplyWithNull(RedisModuleCtx *ctx) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return REDISMODULE_OK;
addReply(c,shared.nullbulk);
return REDISMODULE_OK;
}
/* Reply exactly what a Redis command returned us with RedisModule_Call().
* This function is useful when we use RedisModule_Call() in order to
* execute some command, as we want to reply to the client exactly the
* same reply we obtained by the command.
*
* The function always returns REDISMODULE_OK. */
int RM_ReplyWithCallReply(RedisModuleCtx *ctx, RedisModuleCallReply *reply) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return REDISMODULE_OK;
sds proto = sdsnewlen(reply->proto, reply->protolen);
addReplySds(c,proto);
return REDISMODULE_OK;
}
/* Send a string reply obtained converting the double 'd' into a bulk string.
* This function is basically equivalent to converting a double into
* a string into a C buffer, and then calling the function
* RedisModule_ReplyWithStringBuffer() with the buffer and length.
*
* The function always returns REDISMODULE_OK. */
2016-04-19 15:22:33 +02:00
int RM_ReplyWithDouble(RedisModuleCtx *ctx, double d) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return REDISMODULE_OK;
addReplyDouble(c,d);
2016-04-19 15:22:33 +02:00
return REDISMODULE_OK;
}
2016-03-06 13:44:24 +01:00
/* --------------------------------------------------------------------------
* Commands replication API
* -------------------------------------------------------------------------- */
/* Helper function to replicate MULTI the first time we replicate something
* in the context of a command execution. EXEC will be handled by the
* RedisModuleCommandDispatcher() function. */
void moduleReplicateMultiIfNeeded(RedisModuleCtx *ctx) {
/* Skip this if client explicitly wrap the command with MULTI, or if
* the module command was called by a script. */
if (ctx->client->flags & (CLIENT_MULTI|CLIENT_LUA)) return;
/* If we already emitted MULTI return ASAP. */
2016-03-06 13:44:24 +01:00
if (ctx->flags & REDISMODULE_CTX_MULTI_EMITTED) return;
/* If this is a thread safe context, we do not want to wrap commands
* executed into MUTLI/EXEC, they are executed as single commands
* from an external client in essence. */
if (ctx->flags & REDISMODULE_CTX_THREAD_SAFE) return;
2016-03-06 13:44:24 +01:00
execCommandPropagateMulti(ctx->client);
ctx->flags |= REDISMODULE_CTX_MULTI_EMITTED;
}
/* Replicate the specified command and arguments to slaves and AOF, as effect
* of execution of the calling command implementation.
*
* The replicated commands are always wrapped into the MULTI/EXEC that
2016-03-06 13:44:24 +01:00
* contains all the commands replicated in a given module command
* execution. However the commands replicated with RedisModule_Call()
* are the first items, the ones replicated with RedisModule_Replicate()
2016-03-06 13:44:24 +01:00
* will all follow before the EXEC.
*
* Modules should try to use one interface or the other.
*
* This command follows exactly the same interface of RedisModule_Call(),
* so a set of format specifiers must be passed, followed by arguments
* matching the provided format specifiers.
*
* Please refer to RedisModule_Call() for more information.
*
* The command returns REDISMODULE_ERR if the format specifiers are invalid
* or the command name does not belong to a known command. */
int RM_Replicate(RedisModuleCtx *ctx, const char *cmdname, const char *fmt, ...) {
2016-03-06 13:44:24 +01:00
struct redisCommand *cmd;
robj **argv = NULL;
int argc = 0, flags = 0, j;
va_list ap;
cmd = lookupCommandByCString((char*)cmdname);
if (!cmd) return REDISMODULE_ERR;
/* Create the client and dispatch the command. */
va_start(ap, fmt);
argv = moduleCreateArgvFromUserFormat(cmdname,fmt,&argc,&flags,ap);
va_end(ap);
if (argv == NULL) return REDISMODULE_ERR;
/* Replicate! */
moduleReplicateMultiIfNeeded(ctx);
alsoPropagate(cmd,ctx->client->db->id,argv,argc,
PROPAGATE_AOF|PROPAGATE_REPL);
/* Release the argv. */
for (j = 0; j < argc; j++) decrRefCount(argv[j]);
zfree(argv);
server.dirty++;
2016-03-06 13:44:24 +01:00
return REDISMODULE_OK;
}
/* This function will replicate the command exactly as it was invoked
* by the client. Note that this function will not wrap the command into
2016-03-06 13:44:24 +01:00
* a MULTI/EXEC stanza, so it should not be mixed with other replication
* commands.
*
* Basically this form of replication is useful when you want to propagate
* the command to the slaves and AOF file exactly as it was called, since
* the command can just be re-executed to deterministically re-create the
* new state starting from the old one.
*
* The function always returns REDISMODULE_OK. */
int RM_ReplicateVerbatim(RedisModuleCtx *ctx) {
2016-03-06 13:44:24 +01:00
alsoPropagate(ctx->client->cmd,ctx->client->db->id,
ctx->client->argv,ctx->client->argc,
PROPAGATE_AOF|PROPAGATE_REPL);
server.dirty++;
2016-03-06 13:44:24 +01:00
return REDISMODULE_OK;
}
/* --------------------------------------------------------------------------
* DB and Key APIs -- Generic API
* -------------------------------------------------------------------------- */
2016-05-03 14:32:39 +02:00
/* Return the ID of the current client calling the currently active module
* command. The returned ID has a few guarantees:
*
* 1. The ID is different for each different client, so if the same client
* executes a module command multiple times, it can be recognized as
* having the same ID, otherwise the ID will be different.
* 2. The ID increases monotonically. Clients connecting to the server later
* are guaranteed to get IDs greater than any past ID previously seen.
*
* Valid IDs are from 1 to 2^64-1. If 0 is returned it means there is no way
* to fetch the ID in the context the function was currently called. */
unsigned long long RM_GetClientId(RedisModuleCtx *ctx) {
if (ctx->client == NULL) return 0;
return ctx->client->id;
}
2016-03-06 13:44:24 +01:00
/* Return the currently selected DB. */
int RM_GetSelectedDb(RedisModuleCtx *ctx) {
2016-03-06 13:44:24 +01:00
return ctx->client->db->id;
}
2018-04-09 17:16:55 +02:00
/* Return the current context's flags. The flags provide information on the
* current request context (whether the client is a Lua script or in a MULTI),
2018-04-09 17:16:55 +02:00
* and about the Redis instance in general, i.e replication and persistence.
*
* The available flags are:
2018-04-09 17:16:55 +02:00
*
* * REDISMODULE_CTX_FLAGS_LUA: The command is running in a Lua script
2018-04-09 17:16:55 +02:00
*
* * REDISMODULE_CTX_FLAGS_MULTI: The command is running inside a transaction
2018-04-09 17:16:55 +02:00
*
* * REDISMODULE_CTX_FLAGS_MASTER: The Redis instance is a master
2018-04-09 17:16:55 +02:00
*
* * REDISMODULE_CTX_FLAGS_SLAVE: The Redis instance is a slave
2018-04-09 17:16:55 +02:00
*
* * REDISMODULE_CTX_FLAGS_READONLY: The Redis instance is read-only
2018-04-09 17:16:55 +02:00
*
* * REDISMODULE_CTX_FLAGS_CLUSTER: The Redis instance is in cluster mode
2018-04-09 17:16:55 +02:00
*
* * REDISMODULE_CTX_FLAGS_AOF: The Redis instance has AOF enabled
2018-04-09 17:16:55 +02:00
*
* * REDISMODULE_CTX_FLAGS_RDB: The instance has RDB enabled
2018-04-09 17:16:55 +02:00
*
* * REDISMODULE_CTX_FLAGS_MAXMEMORY: The instance has Maxmemory set
2018-04-09 17:16:55 +02:00
*
* * REDISMODULE_CTX_FLAGS_EVICT: Maxmemory is set and has an eviction
* policy that may delete keys
*
* * REDISMODULE_CTX_FLAGS_OOM: Redis is out of memory according to the
* maxmemory setting.
*
* * REDISMODULE_CTX_FLAGS_OOM_WARNING: Less than 25% of memory remains before
* reaching the maxmemory level.
*/
2017-09-27 11:56:40 +03:00
int RM_GetContextFlags(RedisModuleCtx *ctx) {
2018-04-09 17:16:55 +02:00
int flags = 0;
/* Client specific flags */
if (ctx->client) {
2018-04-09 17:16:55 +02:00
if (ctx->client->flags & CLIENT_LUA)
flags |= REDISMODULE_CTX_FLAGS_LUA;
2018-04-09 17:16:55 +02:00
if (ctx->client->flags & CLIENT_MULTI)
flags |= REDISMODULE_CTX_FLAGS_MULTI;
}
if (server.cluster_enabled)
flags |= REDISMODULE_CTX_FLAGS_CLUSTER;
2018-04-09 17:16:55 +02:00
/* Maxmemory and eviction policy */
if (server.maxmemory > 0) {
flags |= REDISMODULE_CTX_FLAGS_MAXMEMORY;
2018-04-09 17:16:55 +02:00
if (server.maxmemory_policy != MAXMEMORY_NO_EVICTION)
flags |= REDISMODULE_CTX_FLAGS_EVICT;
}
/* Persistence flags */
if (server.aof_state != AOF_OFF)
flags |= REDISMODULE_CTX_FLAGS_AOF;
if (server.saveparamslen > 0)
flags |= REDISMODULE_CTX_FLAGS_RDB;
/* Replication flags */
if (server.masterhost == NULL) {
flags |= REDISMODULE_CTX_FLAGS_MASTER;
} else {
flags |= REDISMODULE_CTX_FLAGS_SLAVE;
if (server.repl_slave_ro)
flags |= REDISMODULE_CTX_FLAGS_READONLY;
}
2018-04-09 17:16:55 +02:00
/* OOM flag. */
float level;
int retval = getMaxmemoryState(NULL,NULL,NULL,&level);
if (retval == C_ERR) flags |= REDISMODULE_CTX_FLAGS_OOM;
if (level > 0.75) flags |= REDISMODULE_CTX_FLAGS_OOM_WARNING;
return flags;
}
2016-03-06 13:44:24 +01:00
/* Change the currently selected DB. Returns an error if the id
* is out of range.
*
* Note that the client will retain the currently selected DB even after
* the Redis command implemented by the module calling this function
* returns.
*
* If the module command wishes to change something in a different DB and
* returns back to the original one, it should call RedisModule_GetSelectedDb()
* before in order to restore the old DB number before returning. */
int RM_SelectDb(RedisModuleCtx *ctx, int newid) {
2016-03-06 13:44:24 +01:00
int retval = selectDb(ctx->client,newid);
return (retval == C_OK) ? REDISMODULE_OK : REDISMODULE_ERR;
}
/* Return an handle representing a Redis key, so that it is possible
* to call other APIs with the key handle as argument to perform
* operations on the key.
*
2018-07-30 16:18:56 +03:00
* The return value is the handle representing the key, that must be
* closed with RM_CloseKey().
2016-03-06 13:44:24 +01:00
*
* If the key does not exist and WRITE mode is requested, the handle
* is still returned, since it is possible to perform operations on
* a yet not existing key (that will be created, for example, after
* a list push operation). If the mode is just READ instead, and the
* key does not exist, NULL is returned. However it is still safe to
* call RedisModule_CloseKey() and RedisModule_KeyType() on a NULL
2016-03-06 13:44:24 +01:00
* value. */
void *RM_OpenKey(RedisModuleCtx *ctx, robj *keyname, int mode) {
2016-03-06 13:44:24 +01:00
RedisModuleKey *kp;
robj *value;
if (mode & REDISMODULE_WRITE) {
value = lookupKeyWrite(ctx->client->db,keyname);
} else {
value = lookupKeyRead(ctx->client->db,keyname);
if (value == NULL) {
return NULL;
}
}
/* Setup the key handle. */
kp = zmalloc(sizeof(*kp));
kp->ctx = ctx;
kp->db = ctx->client->db;
kp->key = keyname;
incrRefCount(keyname);
kp->value = value;
kp->iter = NULL;
kp->mode = mode;
zsetKeyReset(kp);
autoMemoryAdd(ctx,REDISMODULE_AM_KEY,kp);
2016-03-06 13:44:24 +01:00
return (void*)kp;
}
/* Close a key handle. */
void RM_CloseKey(RedisModuleKey *key) {
2016-03-06 13:44:24 +01:00
if (key == NULL) return;
if (key->mode & REDISMODULE_WRITE) signalModifiedKey(key->db,key->key);
/* TODO: if (key->iter) RM_KeyIteratorStop(kp); */
2016-04-20 23:01:40 +02:00
RM_ZsetRangeStop(key);
2016-03-06 13:44:24 +01:00
decrRefCount(key->key);
autoMemoryFreed(key->ctx,REDISMODULE_AM_KEY,key);
2016-03-06 13:44:24 +01:00
zfree(key);
}
/* Return the type of the key. If the key pointer is NULL then
* REDISMODULE_KEYTYPE_EMPTY is returned. */
int RM_KeyType(RedisModuleKey *key) {
2016-03-06 13:44:24 +01:00
if (key == NULL || key->value == NULL) return REDISMODULE_KEYTYPE_EMPTY;
/* We map between defines so that we are free to change the internal
* defines as desired. */
switch(key->value->type) {
case OBJ_STRING: return REDISMODULE_KEYTYPE_STRING;
case OBJ_LIST: return REDISMODULE_KEYTYPE_LIST;
case OBJ_SET: return REDISMODULE_KEYTYPE_SET;
case OBJ_ZSET: return REDISMODULE_KEYTYPE_ZSET;
case OBJ_HASH: return REDISMODULE_KEYTYPE_HASH;
case OBJ_MODULE: return REDISMODULE_KEYTYPE_MODULE;
2016-03-06 13:44:24 +01:00
default: return 0;
}
}
/* Return the length of the value associated with the key.
* For strings this is the length of the string. For all the other types
* is the number of elements (just counting keys for hashes).
*
* If the key pointer is NULL or the key is empty, zero is returned. */
size_t RM_ValueLength(RedisModuleKey *key) {
2016-03-06 13:44:24 +01:00
if (key == NULL || key->value == NULL) return 0;
switch(key->value->type) {
case OBJ_STRING: return stringObjectLen(key->value);
case OBJ_LIST: return listTypeLength(key->value);
case OBJ_SET: return setTypeSize(key->value);
case OBJ_ZSET: return zsetLength(key->value);
case OBJ_HASH: return hashTypeLength(key->value);
default: return 0;
}
}
/* If the key is open for writing, remove it, and setup the key to
* accept new writes as an empty key (that will be created on demand).
* On success REDISMODULE_OK is returned. If the key is not open for
* writing REDISMODULE_ERR is returned. */
int RM_DeleteKey(RedisModuleKey *key) {
2016-03-06 13:44:24 +01:00
if (!(key->mode & REDISMODULE_WRITE)) return REDISMODULE_ERR;
if (key->value) {
dbDelete(key->db,key->key);
key->value = NULL;
}
return REDISMODULE_OK;
}
/* If the key is open for writing, unlink it (that is delete it in a
* non-blocking way, not reclaiming memory immediately) and setup the key to
* accept new writes as an empty key (that will be created on demand).
* On success REDISMODULE_OK is returned. If the key is not open for
* writing REDISMODULE_ERR is returned. */
int RM_UnlinkKey(RedisModuleKey *key) {
if (!(key->mode & REDISMODULE_WRITE)) return REDISMODULE_ERR;
if (key->value) {
dbAsyncDelete(key->db,key->key);
key->value = NULL;
}
return REDISMODULE_OK;
}
2016-04-11 17:12:11 +02:00
/* Return the key expire value, as milliseconds of remaining TTL.
* If no TTL is associated with the key or if the key is empty,
* REDISMODULE_NO_EXPIRE is returned. */
mstime_t RM_GetExpire(RedisModuleKey *key) {
mstime_t expire = getExpire(key->db,key->key);
if (expire == -1 || key->value == NULL) return -1;
expire -= mstime();
return expire >= 0 ? expire : 0;
}
/* Set a new expire for the key. If the special expire
* REDISMODULE_NO_EXPIRE is set, the expire is cancelled if there was
* one (the same as the PERSIST command).
*
* Note that the expire must be provided as a positive integer representing
* the number of milliseconds of TTL the key should have.
*
* The function returns REDISMODULE_OK on success or REDISMODULE_ERR if
* the key was not open for writing or is an empty key. */
int RM_SetExpire(RedisModuleKey *key, mstime_t expire) {
if (!(key->mode & REDISMODULE_WRITE) || key->value == NULL)
return REDISMODULE_ERR;
if (expire != REDISMODULE_NO_EXPIRE) {
expire += mstime();
Replication: fix the infamous key leakage of writable slaves + EXPIRE. BACKGROUND AND USE CASEj Redis slaves are normally write only, however the supprot a "writable" mode which is very handy when scaling reads on slaves, that actually need write operations in order to access data. For instance imagine having slaves replicating certain Sets keys from the master. When accessing the data on the slave, we want to peform intersections between such Sets values. However we don't want to intersect each time: to cache the intersection for some time often is a good idea. To do so, it is possible to setup a slave as a writable slave, and perform the intersection on the slave side, perhaps setting a TTL on the resulting key so that it will expire after some time. THE BUG Problem: in order to have a consistent replication, expiring of keys in Redis replication is up to the master, that synthesize DEL operations to send in the replication stream. However slaves logically expire keys by hiding them from read attempts from clients so that if the master did not promptly sent a DEL, the client still see logically expired keys as non existing. Because slaves don't actively expire keys by actually evicting them but just masking from the POV of read operations, if a key is created in a writable slave, and an expire is set, the key will be leaked forever: 1. No DEL will be received from the master, which does not know about such a key at all. 2. No eviction will be performed by the slave, since it needs to disable eviction because it's up to masters, otherwise consistency of data is lost. THE FIX In order to fix the problem, the slave should be able to tag keys that were created in the slave side and have an expire set in some way. My solution involved using an unique additional dictionary created by the writable slave only if needed. The dictionary is obviously keyed by the key name that we need to track: all the keys that are set with an expire directly by a client writing to the slave are tracked. The value in the dictionary is a bitmap of all the DBs where such a key name need to be tracked, so that we can use a single dictionary to track keys in all the DBs used by the slave (actually this limits the solution to the first 64 DBs, but the default with Redis is to use 16 DBs). This solution allows to pay both a small complexity and CPU penalty, which is zero when the feature is not used, actually. The slave-side eviction is encapsulated in code which is not coupled with the rest of the Redis core, if not for the hook to track the keys. TODO I'm doing the first smoke tests to see if the feature works as expected: so far so good. Unit tests should be added before merging into the 4.0 branch.
2016-12-13 10:20:06 +01:00
setExpire(key->ctx->client,key->db,key->key,expire);
2016-04-11 17:12:11 +02:00
} else {
removeExpire(key->db,key->key);
}
return REDISMODULE_OK;
}
2016-03-06 13:44:24 +01:00
/* --------------------------------------------------------------------------
* Key API for String type
* -------------------------------------------------------------------------- */
/* If the key is open for writing, set the specified string 'str' as the
* value of the key, deleting the old value if any.
* On success REDISMODULE_OK is returned. If the key is not open for
* writing or there is an active iterator, REDISMODULE_ERR is returned. */
int RM_StringSet(RedisModuleKey *key, RedisModuleString *str) {
2016-03-06 13:44:24 +01:00
if (!(key->mode & REDISMODULE_WRITE) || key->iter) return REDISMODULE_ERR;
RM_DeleteKey(key);
2016-03-06 13:44:24 +01:00
setKey(key->db,key->key,str);
2016-04-06 22:46:22 +08:00
key->value = str;
2016-03-06 13:44:24 +01:00
return REDISMODULE_OK;
}
/* Prepare the key associated string value for DMA access, and returns
* a pointer and size (by reference), that the user can use to read or
* modify the string in-place accessing it directly via pointer.
*
* The 'mode' is composed by bitwise OR-ing the following flags:
*
* REDISMODULE_READ -- Read access
* REDISMODULE_WRITE -- Write access
2016-03-06 13:44:24 +01:00
*
* If the DMA is not requested for writing, the pointer returned should
* only be accessed in a read-only fashion.
*
* On error (wrong type) NULL is returned.
*
* DMA access rules:
*
* 1. No other key writing function should be called since the moment
* the pointer is obtained, for all the time we want to use DMA access
* to read or modify the string.
*
* 2. Each time RM_StringTruncate() is called, to continue with the DMA
* access, RM_StringDMA() should be called again to re-obtain
2016-03-06 13:44:24 +01:00
* a new pointer and length.
*
* 3. If the returned pointer is not NULL, but the length is zero, no
* byte can be touched (the string is empty, or the key itself is empty)
* so a RM_StringTruncate() call should be used if there is to enlarge
2016-03-06 13:44:24 +01:00
* the string, and later call StringDMA() again to get the pointer.
*/
char *RM_StringDMA(RedisModuleKey *key, size_t *len, int mode) {
2016-03-06 13:44:24 +01:00
/* We need to return *some* pointer for empty keys, we just return
* a string literal pointer, that is the advantage to be mapped into
* a read only memory page, so the module will segfault if a write
* attempt is performed. */
char *emptystring = "<dma-empty-string>";
if (key->value == NULL) {
*len = 0;
return emptystring;
}
if (key->value->type != OBJ_STRING) return NULL;
/* For write access, and even for read access if the object is encoded,
* we unshare the string (that has the side effect of decoding it). */
if ((mode & REDISMODULE_WRITE) || key->value->encoding != OBJ_ENCODING_RAW)
key->value = dbUnshareStringValue(key->db, key->key, key->value);
*len = sdslen(key->value->ptr);
return key->value->ptr;
}
/* If the string is open for writing and is of string type, resize it, padding
* with zero bytes if the new length is greater than the old one.
*
* After this call, RM_StringDMA() must be called again to continue
2016-03-06 13:44:24 +01:00
* DMA access with the new pointer.
*
* The function returns REDISMODULE_OK on success, and REDISMODULE_ERR on
* error, that is, the key is not open for writing, is not a string
* or resizing for more than 512 MB is requested.
*
* If the key is empty, a string key is created with the new string value
* unless the new length value requested is zero. */
int RM_StringTruncate(RedisModuleKey *key, size_t newlen) {
2016-03-06 13:44:24 +01:00
if (!(key->mode & REDISMODULE_WRITE)) return REDISMODULE_ERR;
if (key->value && key->value->type != OBJ_STRING) return REDISMODULE_ERR;
if (newlen > 512*1024*1024) return REDISMODULE_ERR;
/* Empty key and new len set to 0. Just return REDISMODULE_OK without
* doing anything. */
if (key->value == NULL && newlen == 0) return REDISMODULE_OK;
if (key->value == NULL) {
/* Empty key: create it with the new size. */
robj *o = createObject(OBJ_STRING,sdsnewlen(NULL, newlen));
setKey(key->db,key->key,o);
key->value = o;
decrRefCount(o);
} else {
/* Unshare and resize. */
key->value = dbUnshareStringValue(key->db, key->key, key->value);
size_t curlen = sdslen(key->value->ptr);
if (newlen > curlen) {
key->value->ptr = sdsgrowzero(key->value->ptr,newlen);
} else if (newlen < curlen) {
sdsrange(key->value->ptr,0,newlen-1);
/* If the string is too wasteful, reallocate it. */
if (sdslen(key->value->ptr) < sdsavail(key->value->ptr))
key->value->ptr = sdsRemoveFreeSpace(key->value->ptr);
}
2016-03-06 13:44:24 +01:00
}
return REDISMODULE_OK;
}
/* --------------------------------------------------------------------------
* Key API for List type
* -------------------------------------------------------------------------- */
2018-07-30 16:18:56 +03:00
/* Push an element into a list, on head or tail depending on 'where' argument.
2016-03-06 13:44:24 +01:00
* If the key pointer is about an empty key opened for writing, the key
* is created. On error (key opened for read-only operations or of the wrong
* type) REDISMODULE_ERR is returned, otherwise REDISMODULE_OK is returned. */
int RM_ListPush(RedisModuleKey *key, int where, RedisModuleString *ele) {
2016-03-06 13:44:24 +01:00
if (!(key->mode & REDISMODULE_WRITE)) return REDISMODULE_ERR;
2016-04-25 15:39:33 +02:00
if (key->value && key->value->type != OBJ_LIST) return REDISMODULE_ERR;
2016-04-27 12:16:44 -07:00
if (key->value == NULL) moduleCreateEmptyKey(key,REDISMODULE_KEYTYPE_LIST);
2016-03-06 13:44:24 +01:00
listTypePush(key->value, ele,
(where == REDISMODULE_LIST_HEAD) ? QUICKLIST_HEAD : QUICKLIST_TAIL);
return REDISMODULE_OK;
}
/* Pop an element from the list, and returns it as a module string object
* that the user should be free with RM_FreeString() or by enabling
2016-03-06 13:44:24 +01:00
* automatic memory. 'where' specifies if the element should be popped from
* head or tail. The command returns NULL if:
* 1) The list is empty.
* 2) The key was not open for writing.
* 3) The key is not a list. */
RedisModuleString *RM_ListPop(RedisModuleKey *key, int where) {
2016-03-06 13:44:24 +01:00
if (!(key->mode & REDISMODULE_WRITE) ||
key->value == NULL ||
key->value->type != OBJ_LIST) return NULL;
robj *ele = listTypePop(key->value,
(where == REDISMODULE_LIST_HEAD) ? QUICKLIST_HEAD : QUICKLIST_TAIL);
robj *decoded = getDecodedObject(ele);
decrRefCount(ele);
moduleDelKeyIfEmpty(key);
autoMemoryAdd(key->ctx,REDISMODULE_AM_STRING,decoded);
2016-03-06 13:44:24 +01:00
return decoded;
}
2016-04-14 12:49:16 +02:00
/* --------------------------------------------------------------------------
* Key API for Sorted Set type
* -------------------------------------------------------------------------- */
2016-04-14 15:58:49 +02:00
/* Conversion from/to public flags of the Modules API and our private flags,
* so that we have everything decoupled. */
int RM_ZsetAddFlagsToCoreFlags(int flags) {
int retflags = 0;
if (flags & REDISMODULE_ZADD_XX) retflags |= ZADD_XX;
if (flags & REDISMODULE_ZADD_NX) retflags |= ZADD_NX;
return retflags;
}
/* See previous function comment. */
int RM_ZsetAddFlagsFromCoreFlags(int flags) {
int retflags = 0;
if (flags & ZADD_ADDED) retflags |= REDISMODULE_ZADD_ADDED;
if (flags & ZADD_UPDATED) retflags |= REDISMODULE_ZADD_UPDATED;
if (flags & ZADD_NOP) retflags |= REDISMODULE_ZADD_NOP;
return retflags;
}
/* Add a new element into a sorted set, with the specified 'score'.
* If the element already exists, the score is updated.
*
* A new sorted set is created at value if the key is an empty open key
* setup for writing.
*
* Additional flags can be passed to the function via a pointer, the flags
* are both used to receive input and to communicate state when the function
* returns. 'flagsptr' can be NULL if no special flags are used.
*
* The input flags are:
*
* REDISMODULE_ZADD_XX: Element must already exist. Do nothing otherwise.
* REDISMODULE_ZADD_NX: Element must not exist. Do nothing otherwise.
2016-04-14 15:58:49 +02:00
*
* The output flags are:
*
* REDISMODULE_ZADD_ADDED: The new element was added to the sorted set.
* REDISMODULE_ZADD_UPDATED: The score of the element was updated.
* REDISMODULE_ZADD_NOP: No operation was performed because XX or NX flags.
2016-04-14 15:58:49 +02:00
*
* On success the function returns REDISMODULE_OK. On the following errors
* REDISMODULE_ERR is returned:
*
2016-05-10 18:54:58 +02:00
* * The key was not opened for writing.
* * The key is of the wrong type.
* * 'score' double value is not a number (NaN).
2016-04-14 15:58:49 +02:00
*/
int RM_ZsetAdd(RedisModuleKey *key, double score, RedisModuleString *ele, int *flagsptr) {
int flags = 0;
2016-04-14 12:49:16 +02:00
if (!(key->mode & REDISMODULE_WRITE)) return REDISMODULE_ERR;
2016-04-25 15:39:33 +02:00
if (key->value && key->value->type != OBJ_ZSET) return REDISMODULE_ERR;
2016-04-27 12:16:44 -07:00
if (key->value == NULL) moduleCreateEmptyKey(key,REDISMODULE_KEYTYPE_ZSET);
2016-04-14 15:58:49 +02:00
if (flagsptr) flags = RM_ZsetAddFlagsToCoreFlags(*flagsptr);
if (zsetAdd(key->value,score,ele->ptr,&flags,NULL) == 0) {
if (flagsptr) *flagsptr = 0;
return REDISMODULE_ERR;
}
if (flagsptr) *flagsptr = RM_ZsetAddFlagsFromCoreFlags(flags);
return REDISMODULE_OK;
}
/* This function works exactly like RM_ZsetAdd(), but instead of setting
* a new score, the score of the existing element is incremented, or if the
* element does not already exist, it is added assuming the old score was
* zero.
*
* The input and output flags, and the return value, have the same exact
* meaning, with the only difference that this function will return
* REDISMODULE_ERR even when 'score' is a valid double number, but adding it
2018-07-30 16:18:56 +03:00
* to the existing score results into a NaN (not a number) condition.
2016-04-14 15:58:49 +02:00
*
* This function has an additional field 'newscore', if not NULL is filled
* with the new score of the element after the increment, if no error
* is returned. */
int RM_ZsetIncrby(RedisModuleKey *key, double score, RedisModuleString *ele, int *flagsptr, double *newscore) {
int flags = 0;
if (!(key->mode & REDISMODULE_WRITE)) return REDISMODULE_ERR;
2016-04-25 15:39:33 +02:00
if (key->value && key->value->type != OBJ_ZSET) return REDISMODULE_ERR;
2016-04-27 12:16:44 -07:00
if (key->value == NULL) moduleCreateEmptyKey(key,REDISMODULE_KEYTYPE_ZSET);
2016-04-14 15:58:49 +02:00
if (flagsptr) flags = RM_ZsetAddFlagsToCoreFlags(*flagsptr);
flags |= ZADD_INCR;
2016-04-14 15:58:49 +02:00
if (zsetAdd(key->value,score,ele->ptr,&flags,newscore) == 0) {
if (flagsptr) *flagsptr = 0;
return REDISMODULE_ERR;
}
/* zsetAdd() may signal back that the resulting score is not a number. */
if (flagsptr && (*flagsptr & ZADD_NAN)) {
*flagsptr = 0;
return REDISMODULE_ERR;
}
if (flagsptr) *flagsptr = RM_ZsetAddFlagsFromCoreFlags(flags);
2016-04-14 12:49:16 +02:00
return REDISMODULE_OK;
}
2016-04-15 15:35:11 +02:00
/* Remove the specified element from the sorted set.
* The function returns REDISMODULE_OK on success, and REDISMODULE_ERR
* on one of the following conditions:
*
2016-05-10 18:54:58 +02:00
* * The key was not opened for writing.
* * The key is of the wrong type.
2016-04-15 15:35:11 +02:00
*
* The return value does NOT indicate the fact the element was really
* removed (since it existed) or not, just if the function was executed
* with success.
*
* In order to know if the element was removed, the additional argument
* 'deleted' must be passed, that populates the integer by reference
* setting it to 1 or 0 depending on the outcome of the operation.
* The 'deleted' argument can be NULL if the caller is not interested
* to know if the element was really removed.
*
* Empty keys will be handled correctly by doing nothing. */
int RM_ZsetRem(RedisModuleKey *key, RedisModuleString *ele, int *deleted) {
if (!(key->mode & REDISMODULE_WRITE)) return REDISMODULE_ERR;
2016-04-25 15:39:33 +02:00
if (key->value && key->value->type != OBJ_ZSET) return REDISMODULE_ERR;
2016-04-15 15:35:11 +02:00
if (key->value != NULL && zsetDel(key->value,ele->ptr)) {
if (deleted) *deleted = 1;
} else {
if (deleted) *deleted = 0;
}
return REDISMODULE_OK;
}
2016-04-15 12:46:56 +02:00
/* On success retrieve the double score associated at the sorted set element
* 'ele' and returns REDISMODULE_OK. Otherwise REDISMODULE_ERR is returned
* to signal one of the following conditions:
*
2016-05-10 18:54:58 +02:00
* * There is no such element 'ele' in the sorted set.
* * The key is not a sorted set.
* * The key is an open empty key.
2016-04-15 12:46:56 +02:00
*/
int RM_ZsetScore(RedisModuleKey *key, RedisModuleString *ele, double *score) {
if (key->value == NULL) return REDISMODULE_ERR;
2016-04-25 15:39:33 +02:00
if (key->value->type != OBJ_ZSET) return REDISMODULE_ERR;
2016-04-15 12:46:56 +02:00
if (zsetScore(key->value,ele->ptr,score) == C_ERR) return REDISMODULE_ERR;
return REDISMODULE_OK;
}
2016-04-19 15:22:33 +02:00
/* --------------------------------------------------------------------------
* Key API for Sorted Set iterator
* -------------------------------------------------------------------------- */
void zsetKeyReset(RedisModuleKey *key) {
key->ztype = REDISMODULE_ZSET_RANGE_NONE;
key->zcurrent = NULL;
key->zer = 1;
}
2016-04-19 15:22:33 +02:00
/* Stop a sorted set iteration. */
void RM_ZsetRangeStop(RedisModuleKey *key) {
2016-04-20 23:01:40 +02:00
/* Free resources if needed. */
if (key->ztype == REDISMODULE_ZSET_RANGE_LEX)
2016-04-20 23:01:40 +02:00
zslFreeLexRange(&key->zlrs);
2016-04-19 15:22:33 +02:00
/* Setup sensible values so that misused iteration API calls when an
* iterator is not active will result into something more sensible
* than crashing. */
zsetKeyReset(key);
2016-04-19 15:22:33 +02:00
}
/* Return the "End of range" flag value to signal the end of the iteration. */
int RM_ZsetRangeEndReached(RedisModuleKey *key) {
return key->zer;
}
2016-04-20 23:01:40 +02:00
/* Helper function for RM_ZsetFirstInScoreRange() and RM_ZsetLastInScoreRange().
* Setup the sorted set iteration according to the specified score range
* (see the functions calling it for more info). If 'first' is true the
2016-04-20 12:38:14 +02:00
* first element in the range is used as a starting point for the iterator
* otherwise the last. Return REDISMODULE_OK on success otherwise
* REDISMODULE_ERR. */
2016-04-20 23:01:40 +02:00
int zsetInitScoreRange(RedisModuleKey *key, double min, double max, int minex, int maxex, int first) {
2016-04-19 15:22:33 +02:00
if (!key->value || key->value->type != OBJ_ZSET) return REDISMODULE_ERR;
2016-04-20 23:01:40 +02:00
RM_ZsetRangeStop(key);
key->ztype = REDISMODULE_ZSET_RANGE_SCORE;
2016-04-19 15:22:33 +02:00
key->zer = 0;
2016-04-20 23:01:40 +02:00
/* Setup the range structure used by the sorted set core implementation
* in order to seek at the specified element. */
zrangespec *zrs = &key->zrs;
zrs->min = min;
zrs->max = max;
zrs->minex = minex;
zrs->maxex = maxex;
if (key->value->encoding == OBJ_ENCODING_ZIPLIST) {
key->zcurrent = first ? zzlFirstInRange(key->value->ptr,zrs) :
zzlLastInRange(key->value->ptr,zrs);
} else if (key->value->encoding == OBJ_ENCODING_SKIPLIST) {
zset *zs = key->value->ptr;
zskiplist *zsl = zs->zsl;
key->zcurrent = first ? zslFirstInRange(zsl,zrs) :
zslLastInRange(zsl,zrs);
2016-04-19 15:22:33 +02:00
} else {
2016-04-20 23:01:40 +02:00
serverPanic("Unsupported zset encoding");
2016-04-19 15:22:33 +02:00
}
2016-04-20 23:01:40 +02:00
if (key->zcurrent == NULL) key->zer = 1;
return REDISMODULE_OK;
2016-04-19 15:22:33 +02:00
}
2016-04-20 12:38:14 +02:00
/* Setup a sorted set iterator seeking the first element in the specified
* range. Returns REDISMODULE_OK if the iterator was correctly initialized
* otherwise REDISMODULE_ERR is returned in the following conditions:
*
2016-04-21 09:27:13 +02:00
* 1. The value stored at key is not a sorted set or the key is empty.
*
* The range is specified according to the two double values 'min' and 'max'.
* Both can be infinite using the following two macros:
*
* REDISMODULE_POSITIVE_INFINITE for positive infinite value
* REDISMODULE_NEGATIVE_INFINITE for negative infinite value
*
* 'minex' and 'maxex' parameters, if true, respectively setup a range
* where the min and max value are exclusive (not included) instead of
* inclusive. */
2016-04-20 23:01:40 +02:00
int RM_ZsetFirstInScoreRange(RedisModuleKey *key, double min, double max, int minex, int maxex) {
return zsetInitScoreRange(key,min,max,minex,maxex,1);
2016-04-20 12:38:14 +02:00
}
2016-04-20 23:01:40 +02:00
/* Exactly like RedisModule_ZsetFirstInScoreRange() but the last element of
2016-04-21 09:27:13 +02:00
* the range is selected for the start of the iteration instead. */
2016-04-20 23:01:40 +02:00
int RM_ZsetLastInScoreRange(RedisModuleKey *key, double min, double max, int minex, int maxex) {
return zsetInitScoreRange(key,min,max,minex,maxex,0);
2016-04-20 12:38:14 +02:00
}
2016-04-21 09:27:13 +02:00
/* Helper function for RM_ZsetFirstInLexRange() and RM_ZsetLastInLexRange().
* Setup the sorted set iteration according to the specified lexicographical
* range (see the functions calling it for more info). If 'first' is true the
* first element in the range is used as a starting point for the iterator
* otherwise the last. Return REDISMODULE_OK on success otherwise
* REDISMODULE_ERR.
*
* Note that this function takes 'min' and 'max' in the same form of the
* Redis ZRANGEBYLEX command. */
int zsetInitLexRange(RedisModuleKey *key, RedisModuleString *min, RedisModuleString *max, int first) {
if (!key->value || key->value->type != OBJ_ZSET) return REDISMODULE_ERR;
RM_ZsetRangeStop(key);
key->zer = 0;
/* Setup the range structure used by the sorted set core implementation
* in order to seek at the specified element. */
zlexrangespec *zlrs = &key->zlrs;
if (zslParseLexRange(min, max, zlrs) == C_ERR) return REDISMODULE_ERR;
2016-04-21 11:45:52 +02:00
/* Set the range type to lex only after successfully parsing the range,
* otherwise we don't want the zlexrangespec to be freed. */
key->ztype = REDISMODULE_ZSET_RANGE_LEX;
2016-04-21 09:27:13 +02:00
if (key->value->encoding == OBJ_ENCODING_ZIPLIST) {
key->zcurrent = first ? zzlFirstInLexRange(key->value->ptr,zlrs) :
zzlLastInLexRange(key->value->ptr,zlrs);
} else if (key->value->encoding == OBJ_ENCODING_SKIPLIST) {
zset *zs = key->value->ptr;
zskiplist *zsl = zs->zsl;
key->zcurrent = first ? zslFirstInLexRange(zsl,zlrs) :
zslLastInLexRange(zsl,zlrs);
} else {
serverPanic("Unsupported zset encoding");
}
if (key->zcurrent == NULL) key->zer = 1;
2016-04-21 11:45:52 +02:00
2016-04-21 09:27:13 +02:00
return REDISMODULE_OK;
}
/* Setup a sorted set iterator seeking the first element in the specified
* lexicographical range. Returns REDISMODULE_OK if the iterator was correctly
* initialized otherwise REDISMODULE_ERR is returned in the
* following conditions:
*
* 1. The value stored at key is not a sorted set or the key is empty.
* 2. The lexicographical range 'min' and 'max' format is invalid.
*
* 'min' and 'max' should be provided as two RedisModuleString objects
* in the same format as the parameters passed to the ZRANGEBYLEX command.
* The function does not take ownership of the objects, so they can be released
* ASAP after the iterator is setup. */
int RM_ZsetFirstInLexRange(RedisModuleKey *key, RedisModuleString *min, RedisModuleString *max) {
return zsetInitLexRange(key,min,max,1);
}
/* Exactly like RedisModule_ZsetFirstInLexRange() but the last element of
* the range is selected for the start of the iteration instead. */
int RM_ZsetLastInLexRange(RedisModuleKey *key, RedisModuleString *min, RedisModuleString *max) {
return zsetInitLexRange(key,min,max,0);
}
2016-04-19 15:22:33 +02:00
/* Return the current sorted set element of an active sorted set iterator
* or NULL if the range specified in the iterator does not include any
* element. */
RedisModuleString *RM_ZsetRangeCurrentElement(RedisModuleKey *key, double *score) {
RedisModuleString *str;
2016-04-19 15:22:33 +02:00
if (key->zcurrent == NULL) return NULL;
if (key->value->encoding == OBJ_ENCODING_ZIPLIST) {
unsigned char *eptr, *sptr;
eptr = key->zcurrent;
sds ele = ziplistGetObject(eptr);
if (score) {
sptr = ziplistNext(key->value->ptr,eptr);
*score = zzlGetScore(sptr);
}
str = createObject(OBJ_STRING,ele);
2016-04-19 15:22:33 +02:00
} else if (key->value->encoding == OBJ_ENCODING_SKIPLIST) {
zskiplistNode *ln = key->zcurrent;
if (score) *score = ln->score;
str = createStringObject(ln->ele,sdslen(ln->ele));
2016-04-19 15:22:33 +02:00
} else {
serverPanic("Unsupported zset encoding");
}
autoMemoryAdd(key->ctx,REDISMODULE_AM_STRING,str);
return str;
2016-04-19 15:22:33 +02:00
}
/* Go to the next element of the sorted set iterator. Returns 1 if there was
* a next element, 0 if we are already at the latest element or the range
* does not include any item at all. */
int RM_ZsetRangeNext(RedisModuleKey *key) {
2016-04-20 23:01:40 +02:00
if (!key->ztype || !key->zcurrent) return 0; /* No active iterator. */
2016-04-19 17:02:24 +02:00
2016-04-19 15:22:33 +02:00
if (key->value->encoding == OBJ_ENCODING_ZIPLIST) {
unsigned char *zl = key->value->ptr;
unsigned char *eptr = key->zcurrent;
unsigned char *next;
next = ziplistNext(zl,eptr); /* Skip element. */
if (next) next = ziplistNext(zl,next); /* Skip score. */
if (next == NULL) {
key->zer = 1;
return 0;
} else {
2016-04-19 17:02:24 +02:00
/* Are we still within the range? */
2016-04-20 23:01:40 +02:00
if (key->ztype == REDISMODULE_ZSET_RANGE_SCORE) {
2016-04-20 12:38:14 +02:00
/* Fetch the next element score for the
* range check. */
unsigned char *saved_next = next;
next = ziplistNext(zl,next); /* Skip next element. */
double score = zzlGetScore(next); /* Obtain the next score. */
2016-04-20 23:01:40 +02:00
if (!zslValueLteMax(score,&key->zrs)) {
2016-04-20 12:38:14 +02:00
key->zer = 1;
return 0;
}
next = saved_next;
} else if (key->ztype == REDISMODULE_ZSET_RANGE_LEX) {
2016-04-21 11:17:00 +02:00
if (!zzlLexValueLteMax(next,&key->zlrs)) {
key->zer = 1;
return 0;
}
2016-04-19 17:02:24 +02:00
}
2016-04-20 12:38:14 +02:00
key->zcurrent = next;
2016-04-19 15:22:33 +02:00
return 1;
}
} else if (key->value->encoding == OBJ_ENCODING_SKIPLIST) {
zskiplistNode *ln = key->zcurrent, *next = ln->level[0].forward;
if (next == NULL) {
key->zer = 1;
return 0;
} else {
2016-04-19 17:02:24 +02:00
/* Are we still within the range? */
2016-04-20 23:01:40 +02:00
if (key->ztype == REDISMODULE_ZSET_RANGE_SCORE &&
!zslValueLteMax(next->score,&key->zrs))
2016-04-19 17:02:24 +02:00
{
key->zer = 1;
return 0;
} else if (key->ztype == REDISMODULE_ZSET_RANGE_LEX) {
if (!zslLexValueLteMax(next->ele,&key->zlrs)) {
2016-04-21 11:17:00 +02:00
key->zer = 1;
return 0;
}
2016-04-19 17:02:24 +02:00
}
2016-04-19 15:22:33 +02:00
key->zcurrent = next;
return 1;
}
} else {
serverPanic("Unsupported zset encoding");
}
}
2016-04-20 12:38:14 +02:00
/* Go to the previous element of the sorted set iterator. Returns 1 if there was
* a previous element, 0 if we are already at the first element or the range
* does not include any item at all. */
int RM_ZsetRangePrev(RedisModuleKey *key) {
2016-04-20 23:01:40 +02:00
if (!key->ztype || !key->zcurrent) return 0; /* No active iterator. */
2016-04-20 12:38:14 +02:00
if (key->value->encoding == OBJ_ENCODING_ZIPLIST) {
unsigned char *zl = key->value->ptr;
unsigned char *eptr = key->zcurrent;
unsigned char *prev;
prev = ziplistPrev(zl,eptr); /* Go back to previous score. */
if (prev) prev = ziplistPrev(zl,prev); /* Back to previous ele. */
if (prev == NULL) {
key->zer = 1;
return 0;
} else {
/* Are we still within the range? */
2016-04-20 23:01:40 +02:00
if (key->ztype == REDISMODULE_ZSET_RANGE_SCORE) {
2016-04-20 12:38:14 +02:00
/* Fetch the previous element score for the
* range check. */
unsigned char *saved_prev = prev;
2016-04-25 15:39:33 +02:00
prev = ziplistNext(zl,prev); /* Skip element to get the score.*/
2016-04-20 12:38:14 +02:00
double score = zzlGetScore(prev); /* Obtain the prev score. */
2016-04-20 23:01:40 +02:00
if (!zslValueGteMin(score,&key->zrs)) {
2016-04-20 12:38:14 +02:00
key->zer = 1;
return 0;
}
prev = saved_prev;
} else if (key->ztype == REDISMODULE_ZSET_RANGE_LEX) {
2016-04-21 11:17:00 +02:00
if (!zzlLexValueGteMin(prev,&key->zlrs)) {
key->zer = 1;
return 0;
}
2016-04-20 12:38:14 +02:00
}
key->zcurrent = prev;
return 1;
}
} else if (key->value->encoding == OBJ_ENCODING_SKIPLIST) {
zskiplistNode *ln = key->zcurrent, *prev = ln->backward;
if (prev == NULL) {
key->zer = 1;
return 0;
} else {
/* Are we still within the range? */
2016-04-20 23:01:40 +02:00
if (key->ztype == REDISMODULE_ZSET_RANGE_SCORE &&
!zslValueGteMin(prev->score,&key->zrs))
2016-04-20 12:38:14 +02:00
{
key->zer = 1;
return 0;
} else if (key->ztype == REDISMODULE_ZSET_RANGE_LEX) {
2016-04-21 11:17:00 +02:00
if (!zslLexValueGteMin(prev->ele,&key->zlrs)) {
key->zer = 1;
return 0;
}
2016-04-20 12:38:14 +02:00
}
key->zcurrent = prev;
return 1;
}
} else {
serverPanic("Unsupported zset encoding");
}
}
2016-04-25 15:39:33 +02:00
/* --------------------------------------------------------------------------
* Key API for Hash type
* -------------------------------------------------------------------------- */
/* Set the field of the specified hash field to the specified value.
* If the key is an empty key open for writing, it is created with an empty
* hash value, in order to set the specified field.
*
* The function is variadic and the user must specify pairs of field
* names and values, both as RedisModuleString pointers (unless the
* CFIELD option is set, see later).
*
* Example to set the hash argv[1] to the value argv[2]:
*
* RedisModule_HashSet(key,REDISMODULE_HASH_NONE,argv[1],argv[2],NULL);
2016-04-25 15:39:33 +02:00
*
* The function can also be used in order to delete fields (if they exist)
* by setting them to the specified value of REDISMODULE_HASH_DELETE:
2016-04-25 15:39:33 +02:00
*
* RedisModule_HashSet(key,REDISMODULE_HASH_NONE,argv[1],
* REDISMODULE_HASH_DELETE,NULL);
2016-04-25 15:39:33 +02:00
*
* The behavior of the command changes with the specified flags, that can be
* set to REDISMODULE_HASH_NONE if no special behavior is needed.
2016-04-25 15:39:33 +02:00
*
* REDISMODULE_HASH_NX: The operation is performed only if the field was not
* already existing in the hash.
* REDISMODULE_HASH_XX: The operation is performed only if the field was
* already existing, so that a new value could be
* associated to an existing filed, but no new fields
* are created.
* REDISMODULE_HASH_CFIELDS: The field names passed are null terminated C
* strings instead of RedisModuleString objects.
2016-04-25 15:39:33 +02:00
*
* Unless NX is specified, the command overwrites the old field value with
* the new one.
*
* When using REDISMODULE_HASH_CFIELDS, field names are reported using
2016-04-25 15:39:33 +02:00
* normal C strings, so for example to delete the field "foo" the following
* code can be used:
*
* RedisModule_HashSet(key,REDISMODULE_HASH_CFIELDS,"foo",
* REDISMODULE_HASH_DELETE,NULL);
2016-04-25 15:39:33 +02:00
*
* Return value:
*
* The number of fields updated (that may be less than the number of fields
* specified because of the XX or NX options).
*
* In the following case the return value is always zero:
*
2016-05-10 18:54:58 +02:00
* * The key was not open for writing.
* * The key was associated with a non Hash value.
2016-04-25 15:39:33 +02:00
*/
int RM_HashSet(RedisModuleKey *key, int flags, ...) {
va_list ap;
if (!(key->mode & REDISMODULE_WRITE)) return 0;
if (key->value && key->value->type != OBJ_HASH) return 0;
2016-04-27 12:16:44 -07:00
if (key->value == NULL) moduleCreateEmptyKey(key,REDISMODULE_KEYTYPE_HASH);
2016-04-25 15:39:33 +02:00
int updated = 0;
va_start(ap, flags);
while(1) {
RedisModuleString *field, *value;
/* Get the field and value objects. */
if (flags & REDISMODULE_HASH_CFIELDS) {
2016-04-25 15:39:33 +02:00
char *cfield = va_arg(ap,char*);
if (cfield == NULL) break;
field = createRawStringObject(cfield,strlen(cfield));
} else {
field = va_arg(ap,RedisModuleString*);
if (field == NULL) break;
}
value = va_arg(ap,RedisModuleString*);
/* Handle XX and NX */
if (flags & (REDISMODULE_HASH_XX|REDISMODULE_HASH_NX)) {
2016-04-25 15:39:33 +02:00
int exists = hashTypeExists(key->value, field->ptr);
if (((flags & REDISMODULE_HASH_XX) && !exists) ||
((flags & REDISMODULE_HASH_NX) && exists))
2016-04-25 15:39:33 +02:00
{
if (flags & REDISMODULE_HASH_CFIELDS) decrRefCount(field);
2016-04-25 15:39:33 +02:00
continue;
}
}
/* Handle deletion if value is REDISMODULE_HASH_DELETE. */
if (value == REDISMODULE_HASH_DELETE) {
2016-04-25 15:39:33 +02:00
updated += hashTypeDelete(key->value, field->ptr);
if (flags & REDISMODULE_HASH_CFIELDS) decrRefCount(field);
2016-04-25 15:39:33 +02:00
continue;
}
int low_flags = HASH_SET_COPY;
2016-04-25 15:39:33 +02:00
/* If CFIELDS is active, we can pass the ownership of the
* SDS object to the low level function that sets the field
* to avoid a useless copy. */
if (flags & REDISMODULE_HASH_CFIELDS)
2016-04-25 15:39:33 +02:00
low_flags |= HASH_SET_TAKE_FIELD;
robj *argv[2] = {field,value};
hashTypeTryConversion(key->value,argv,0,1);
2016-04-25 15:39:33 +02:00
updated += hashTypeSet(key->value, field->ptr, value->ptr, low_flags);
/* If CFIELDS is active, SDS string ownership is now of hashTypeSet(),
* however we still have to release the 'field' object shell. */
if (flags & REDISMODULE_HASH_CFIELDS) {
field->ptr = NULL; /* Prevent the SDS string from being freed. */
decrRefCount(field);
}
2016-04-25 15:39:33 +02:00
}
va_end(ap);
moduleDelKeyIfEmpty(key);
return updated;
}
/* Get fields from an hash value. This function is called using a variable
* number of arguments, alternating a field name (as a StringRedisModule
* pointer) with a pointer to a StringRedisModule pointer, that is set to the
* value of the field if the field exist, or NULL if the field did not exist.
* At the end of the field/value-ptr pairs, NULL must be specified as last
* argument to signal the end of the arguments in the variadic function.
*
* This is an example usage:
*
2016-05-10 18:54:58 +02:00
* RedisModuleString *first, *second;
* RedisModule_HashGet(mykey,REDISMODULE_HASH_NONE,argv[1],&first,
2016-04-25 15:39:33 +02:00
* argv[2],&second,NULL);
*
* As with RedisModule_HashSet() the behavior of the command can be specified
* passing flags different than REDISMODULE_HASH_NONE:
2016-04-25 15:39:33 +02:00
*
* REDISMODULE_HASH_CFIELD: field names as null terminated C strings.
2016-04-25 15:39:33 +02:00
*
* REDISMODULE_HASH_EXISTS: instead of setting the value of the field
2016-04-25 15:39:33 +02:00
* expecting a RedisModuleString pointer to pointer, the function just
* reports if the field esists or not and expects an integer pointer
* as the second element of each pair.
*
* Example of REDISMODULE_HASH_CFIELD:
2016-04-25 15:39:33 +02:00
*
2016-05-10 18:54:58 +02:00
* RedisModuleString *username, *hashedpass;
* RedisModule_HashGet(mykey,"username",&username,"hp",&hashedpass, NULL);
2016-04-25 15:39:33 +02:00
*
* Example of REDISMODULE_HASH_EXISTS:
2016-04-25 15:39:33 +02:00
*
2016-05-10 18:54:58 +02:00
* int exists;
* RedisModule_HashGet(mykey,argv[1],&exists,NULL);
2016-04-25 15:39:33 +02:00
*
* The function returns REDISMODULE_OK on success and REDISMODULE_ERR if
* the key is not an hash value.
2016-04-25 17:09:26 +02:00
*
* Memory management:
*
* The returned RedisModuleString objects should be released with
* RedisModule_FreeString(), or by enabling automatic memory management.
2016-04-25 15:39:33 +02:00
*/
int RM_HashGet(RedisModuleKey *key, int flags, ...) {
2016-04-25 17:09:26 +02:00
va_list ap;
if (key->value && key->value->type != OBJ_HASH) return REDISMODULE_ERR;
va_start(ap, flags);
while(1) {
RedisModuleString *field, **valueptr;
int *existsptr;
/* Get the field object and the value pointer to pointer. */
if (flags & REDISMODULE_HASH_CFIELDS) {
2016-04-25 17:09:26 +02:00
char *cfield = va_arg(ap,char*);
if (cfield == NULL) break;
field = createRawStringObject(cfield,strlen(cfield));
} else {
field = va_arg(ap,RedisModuleString*);
if (field == NULL) break;
}
/* Query the hash for existence or value object. */
if (flags & REDISMODULE_HASH_EXISTS) {
2016-04-25 17:09:26 +02:00
existsptr = va_arg(ap,int*);
if (key->value)
*existsptr = hashTypeExists(key->value,field->ptr);
else
*existsptr = 0;
} else {
valueptr = va_arg(ap,RedisModuleString**);
if (key->value) {
*valueptr = hashTypeGetValueObject(key->value,field->ptr);
if (*valueptr) {
robj *decoded = getDecodedObject(*valueptr);
decrRefCount(*valueptr);
*valueptr = decoded;
}
if (*valueptr)
autoMemoryAdd(key->ctx,REDISMODULE_AM_STRING,*valueptr);
} else {
*valueptr = NULL;
}
}
/* Cleanup */
if (flags & REDISMODULE_HASH_CFIELDS) decrRefCount(field);
2016-04-25 17:09:26 +02:00
}
va_end(ap);
return REDISMODULE_OK;
2016-04-25 15:39:33 +02:00
}
2016-03-06 13:44:24 +01:00
/* --------------------------------------------------------------------------
* Redis <-> Modules generic Call() API
* -------------------------------------------------------------------------- */
/* Create a new RedisModuleCallReply object. The processing of the reply
* is lazy, the object is just populated with the raw protocol and later
* is processed as needed. Initially we just make sure to set the right
* reply type, which is extremely cheap to do. */
RedisModuleCallReply *moduleCreateCallReplyFromProto(RedisModuleCtx *ctx, sds proto) {
RedisModuleCallReply *reply = zmalloc(sizeof(*reply));
reply->ctx = ctx;
reply->proto = proto;
reply->protolen = sdslen(proto);
reply->flags = REDISMODULE_REPLYFLAG_TOPARSE; /* Lazy parsing. */
switch(proto[0]) {
case '$':
case '+': reply->type = REDISMODULE_REPLY_STRING; break;
case '-': reply->type = REDISMODULE_REPLY_ERROR; break;
case ':': reply->type = REDISMODULE_REPLY_INTEGER; break;
case '*': reply->type = REDISMODULE_REPLY_ARRAY; break;
default: reply->type = REDISMODULE_REPLY_UNKNOWN; break;
2016-03-06 13:44:24 +01:00
}
if ((proto[0] == '*' || proto[0] == '$') && proto[1] == '-')
reply->type = REDISMODULE_REPLY_NULL;
return reply;
}
void moduleParseCallReply_Int(RedisModuleCallReply *reply);
void moduleParseCallReply_BulkString(RedisModuleCallReply *reply);
void moduleParseCallReply_SimpleString(RedisModuleCallReply *reply);
void moduleParseCallReply_Array(RedisModuleCallReply *reply);
/* Do nothing if REDISMODULE_REPLYFLAG_TOPARSE is false, otherwise
* use the protcol of the reply in reply->proto in order to fill the
* reply with parsed data according to the reply type. */
void moduleParseCallReply(RedisModuleCallReply *reply) {
if (!(reply->flags & REDISMODULE_REPLYFLAG_TOPARSE)) return;
reply->flags &= ~REDISMODULE_REPLYFLAG_TOPARSE;
switch(reply->proto[0]) {
case ':': moduleParseCallReply_Int(reply); break;
case '$': moduleParseCallReply_BulkString(reply); break;
case '-': /* handled by next item. */
case '+': moduleParseCallReply_SimpleString(reply); break;
case '*': moduleParseCallReply_Array(reply); break;
}
}
void moduleParseCallReply_Int(RedisModuleCallReply *reply) {
char *proto = reply->proto;
char *p = strchr(proto+1,'\r');
string2ll(proto+1,p-proto-1,&reply->val.ll);
reply->protolen = p-proto+2;
reply->type = REDISMODULE_REPLY_INTEGER;
}
void moduleParseCallReply_BulkString(RedisModuleCallReply *reply) {
char *proto = reply->proto;
char *p = strchr(proto+1,'\r');
long long bulklen;
string2ll(proto+1,p-proto-1,&bulklen);
if (bulklen == -1) {
2016-04-06 22:42:24 +08:00
reply->protolen = p-proto+2;
2016-03-06 13:44:24 +01:00
reply->type = REDISMODULE_REPLY_NULL;
} else {
reply->val.str = p+2;
reply->len = bulklen;
reply->protolen = p-proto+2+bulklen+2;
reply->type = REDISMODULE_REPLY_STRING;
}
}
void moduleParseCallReply_SimpleString(RedisModuleCallReply *reply) {
char *proto = reply->proto;
char *p = strchr(proto+1,'\r');
reply->val.str = proto+1;
reply->len = p-proto-1;
2016-04-06 22:42:24 +08:00
reply->protolen = p-proto+2;
2016-03-06 13:44:24 +01:00
reply->type = proto[0] == '+' ? REDISMODULE_REPLY_STRING :
REDISMODULE_REPLY_ERROR;
}
void moduleParseCallReply_Array(RedisModuleCallReply *reply) {
char *proto = reply->proto;
char *p = strchr(proto+1,'\r');
long long arraylen, j;
string2ll(proto+1,p-proto-1,&arraylen);
p += 2;
if (arraylen == -1) {
2016-04-06 22:42:24 +08:00
reply->protolen = p-proto;
2016-03-06 13:44:24 +01:00
reply->type = REDISMODULE_REPLY_NULL;
return;
}
reply->val.array = zmalloc(sizeof(RedisModuleCallReply)*arraylen);
reply->len = arraylen;
for (j = 0; j < arraylen; j++) {
RedisModuleCallReply *ele = reply->val.array+j;
ele->flags = REDISMODULE_REPLYFLAG_NESTED |
REDISMODULE_REPLYFLAG_TOPARSE;
ele->proto = p;
ele->ctx = reply->ctx;
2016-03-06 13:44:24 +01:00
moduleParseCallReply(ele);
p += ele->protolen;
}
2016-04-06 22:42:24 +08:00
reply->protolen = p-proto;
2016-03-06 13:44:24 +01:00
reply->type = REDISMODULE_REPLY_ARRAY;
}
/* Free a Call reply and all the nested replies it contains if it's an
* array. */
void RM_FreeCallReply_Rec(RedisModuleCallReply *reply, int freenested){
2016-03-06 13:44:24 +01:00
/* Don't free nested replies by default: the user must always free the
* toplevel reply. However be gentle and don't crash if the module
* misuses the API. */
if (!freenested && reply->flags & REDISMODULE_REPLYFLAG_NESTED) return;
if (!(reply->flags & REDISMODULE_REPLYFLAG_TOPARSE)) {
if (reply->type == REDISMODULE_REPLY_ARRAY) {
size_t j;
for (j = 0; j < reply->len; j++)
RM_FreeCallReply_Rec(reply->val.array+j,1);
2016-03-06 13:44:24 +01:00
zfree(reply->val.array);
}
}
/* For nested replies, we don't free reply->proto (which if not NULL
* references the parent reply->proto buffer), nor the structure
* itself which is allocated as an array of structures, and is freed
* when the array value is released. */
if (!(reply->flags & REDISMODULE_REPLYFLAG_NESTED)) {
if (reply->proto) sdsfree(reply->proto);
zfree(reply);
}
}
/* Wrapper for the recursive free reply function. This is needed in order
* to have the first level function to return on nested replies, but only
* if called by the module API. */
void RM_FreeCallReply(RedisModuleCallReply *reply) {
RedisModuleCtx *ctx = reply->ctx;
RM_FreeCallReply_Rec(reply,0);
autoMemoryFreed(ctx,REDISMODULE_AM_REPLY,reply);
2016-03-06 13:44:24 +01:00
}
/* Return the reply type. */
int RM_CallReplyType(RedisModuleCallReply *reply) {
if (!reply) return REDISMODULE_REPLY_UNKNOWN;
2016-03-06 13:44:24 +01:00
return reply->type;
}
/* Return the reply type length, where applicable. */
size_t RM_CallReplyLength(RedisModuleCallReply *reply) {
2016-03-06 13:44:24 +01:00
moduleParseCallReply(reply);
switch(reply->type) {
case REDISMODULE_REPLY_STRING:
case REDISMODULE_REPLY_ERROR:
case REDISMODULE_REPLY_ARRAY:
return reply->len;
default:
return 0;
}
}
/* Return the 'idx'-th nested call reply element of an array reply, or NULL
* if the reply type is wrong or the index is out of range. */
RedisModuleCallReply *RM_CallReplyArrayElement(RedisModuleCallReply *reply, size_t idx) {
2016-03-06 13:44:24 +01:00
moduleParseCallReply(reply);
if (reply->type != REDISMODULE_REPLY_ARRAY) return NULL;
if (idx >= reply->len) return NULL;
return reply->val.array+idx;
}
/* Return the long long of an integer reply. */
long long RM_CallReplyInteger(RedisModuleCallReply *reply) {
2016-03-06 13:44:24 +01:00
moduleParseCallReply(reply);
if (reply->type != REDISMODULE_REPLY_INTEGER) return LLONG_MIN;
return reply->val.ll;
}
/* Return the pointer and length of a string or error reply. */
const char *RM_CallReplyStringPtr(RedisModuleCallReply *reply, size_t *len) {
2016-03-06 13:44:24 +01:00
moduleParseCallReply(reply);
if (reply->type != REDISMODULE_REPLY_STRING &&
reply->type != REDISMODULE_REPLY_ERROR) return NULL;
if (len) *len = reply->len;
return reply->val.str;
}
/* Return a new string object from a call reply of type string, error or
* integer. Otherwise (wrong reply type) return NULL. */
RedisModuleString *RM_CreateStringFromCallReply(RedisModuleCallReply *reply) {
2016-03-06 13:44:24 +01:00
moduleParseCallReply(reply);
switch(reply->type) {
case REDISMODULE_REPLY_STRING:
case REDISMODULE_REPLY_ERROR:
return RM_CreateString(reply->ctx,reply->val.str,reply->len);
2016-03-06 13:44:24 +01:00
case REDISMODULE_REPLY_INTEGER: {
char buf[64];
int len = ll2string(buf,sizeof(buf),reply->val.ll);
return RM_CreateString(reply->ctx,buf,len);
2016-03-06 13:44:24 +01:00
}
default: return NULL;
}
}
/* Returns an array of robj pointers, and populates *argc with the number
* of items, by parsing the format specifier "fmt" as described for
* the RM_Call(), RM_Replicate() and other module APIs.
2016-03-06 13:44:24 +01:00
*
* The integer pointed by 'flags' is populated with flags according
* to special modifiers in "fmt". For now only one exists:
*
* "!" -> REDISMODULE_ARGV_REPLICATE
2016-03-06 13:44:24 +01:00
*
* On error (format specifier error) NULL is returned and nothing is
* allocated. On success the argument vector is returned. */
#define REDISMODULE_ARGV_REPLICATE (1<<0)
robj **moduleCreateArgvFromUserFormat(const char *cmdname, const char *fmt, int *argcp, int *flags, va_list ap) {
int argc = 0, argv_size, j;
robj **argv = NULL;
/* As a first guess to avoid useless reallocations, size argv to
* hold one argument for each char specifier in 'fmt'. */
argv_size = strlen(fmt)+1; /* +1 because of the command name. */
argv = zrealloc(argv,sizeof(robj*)*argv_size);
/* Build the arguments vector based on the format specifier. */
argv[0] = createStringObject(cmdname,strlen(cmdname));
argc++;
/* Create the client and dispatch the command. */
const char *p = fmt;
while(*p) {
if (*p == 'c') {
char *cstr = va_arg(ap,char*);
argv[argc++] = createStringObject(cstr,strlen(cstr));
} else if (*p == 's') {
robj *obj = va_arg(ap,void*);
argv[argc++] = obj;
incrRefCount(obj);
} else if (*p == 'b') {
char *buf = va_arg(ap,char*);
size_t len = va_arg(ap,size_t);
argv[argc++] = createStringObject(buf,len);
} else if (*p == 'l') {
long ll = va_arg(ap,long long);
argv[argc++] = createObject(OBJ_STRING,sdsfromlonglong(ll));
2016-03-06 13:44:24 +01:00
} else if (*p == 'v') {
2016-04-28 13:12:09 +03:00
/* A vector of strings */
2016-04-28 12:50:55 +03:00
robj **v = va_arg(ap, void*);
size_t vlen = va_arg(ap, size_t);
/* We need to grow argv to hold the vector's elements.
2016-04-28 13:10:00 +03:00
* We resize by vector_len-1 elements, because we held
* one element in argv for the vector already */
argv_size += vlen-1;
2016-04-28 12:50:55 +03:00
argv = zrealloc(argv,sizeof(robj*)*argv_size);
2016-04-28 13:12:09 +03:00
size_t i = 0;
2016-04-28 12:50:55 +03:00
for (i = 0; i < vlen; i++) {
incrRefCount(v[i]);
argv[argc++] = v[i];
}
2016-03-06 13:44:24 +01:00
} else if (*p == '!') {
if (flags) (*flags) |= REDISMODULE_ARGV_REPLICATE;
} else {
goto fmterr;
}
p++;
}
*argcp = argc;
return argv;
fmterr:
for (j = 0; j < argc; j++)
decrRefCount(argv[j]);
zfree(argv);
return NULL;
}
/* Exported API to call any Redis command from modules.
* On success a RedisModuleCallReply object is returned, otherwise
* NULL is returned and errno is set to the following values:
*
* EINVAL: command non existing, wrong arity, wrong format specifier.
* EPERM: operation in Cluster instance with key in non local slot. */
RedisModuleCallReply *RM_Call(RedisModuleCtx *ctx, const char *cmdname, const char *fmt, ...) {
2016-03-06 13:44:24 +01:00
struct redisCommand *cmd;
client *c = NULL;
robj **argv = NULL;
int argc = 0, flags = 0;
va_list ap;
RedisModuleCallReply *reply = NULL;
int replicate = 0; /* Replicate this command? */
cmd = lookupCommandByCString((char*)cmdname);
if (!cmd) {
errno = EINVAL;
return NULL;
}
/* Create the client and dispatch the command. */
va_start(ap, fmt);
c = createClient(-1);
argv = moduleCreateArgvFromUserFormat(cmdname,fmt,&argc,&flags,ap);
replicate = flags & REDISMODULE_ARGV_REPLICATE;
va_end(ap);
/* Setup our fake client for command execution. */
c->flags |= CLIENT_MODULE;
c->db = ctx->client->db;
2016-03-06 13:44:24 +01:00
c->argv = argv;
c->argc = argc;
c->cmd = c->lastcmd = cmd;
/* We handle the above format error only when the client is setup so that
* we can free it normally. */
if (argv == NULL) goto cleanup;
/* Basic arity checks. */
if ((cmd->arity > 0 && cmd->arity != argc) || (argc < -cmd->arity)) {
errno = EINVAL;
goto cleanup;
}
/* If this is a Redis Cluster node, we need to make sure the module is not
* trying to access non-local keys, with the exception of commands
* received from our master. */
if (server.cluster_enabled && !(ctx->client->flags & CLIENT_MASTER)) {
/* Duplicate relevant flags in the module client. */
c->flags &= ~(CLIENT_READONLY|CLIENT_ASKING);
c->flags |= ctx->client->flags & (CLIENT_READONLY|CLIENT_ASKING);
if (getNodeByQuery(c,c->cmd,c->argv,c->argc,NULL,NULL) !=
server.cluster->myself)
{
errno = EPERM;
goto cleanup;
}
}
/* If we are using single commands replication, we need to wrap what
* we propagate into a MULTI/EXEC block, so that it will be atomic like
* a Lua script in the context of AOF and slaves. */
if (replicate) moduleReplicateMultiIfNeeded(ctx);
/* Run the command */
int call_flags = CMD_CALL_SLOWLOG | CMD_CALL_STATS;
if (replicate) {
call_flags |= CMD_CALL_PROPAGATE_AOF;
call_flags |= CMD_CALL_PROPAGATE_REPL;
}
call(c,call_flags);
/* Convert the result of the Redis command into a suitable Lua type.
* The first thing we need is to create a single string from the client
* output buffers. */
sds proto = sdsnewlen(c->buf,c->bufpos);
c->bufpos = 0;
while(listLength(c->reply)) {
clientReplyBlock *o = listNodeValue(listFirst(c->reply));
2016-03-06 13:44:24 +01:00
proto = sdscatlen(proto,o->buf,o->used);
2016-03-06 13:44:24 +01:00
listDelNode(c->reply,listFirst(c->reply));
}
reply = moduleCreateCallReplyFromProto(ctx,proto);
autoMemoryAdd(ctx,REDISMODULE_AM_REPLY,reply);
2016-03-06 13:44:24 +01:00
cleanup:
freeClient(c);
return reply;
}
/* Return a pointer, and a length, to the protocol returned by the command
* that returned the reply object. */
const char *RM_CallReplyProto(RedisModuleCallReply *reply, size_t *len) {
2016-03-06 13:44:24 +01:00
if (reply->proto) *len = sdslen(reply->proto);
return reply->proto;
}
/* --------------------------------------------------------------------------
* Modules data types
*
* When String DMA or using existing data structures is not enough, it is
* possible to create new data types from scratch and export them to
* Redis. The module must provide a set of callbacks for handling the
* new values exported (for example in order to provide RDB saving/loading,
* AOF rewrite, and so forth). In this section we define this API.
* -------------------------------------------------------------------------- */
/* Turn a 9 chars name in the specified charset and a 10 bit encver into
* a single 64 bit unsigned integer that represents this exact module name
* and version. This final number is called a "type ID" and is used when
* writing module exported values to RDB files, in order to re-associate the
* value to the right module to load them during RDB loading.
*
* If the string is not of the right length or the charset is wrong, or
* if encver is outside the unsigned 10 bit integer range, 0 is returned,
* otherwise the function returns the right type ID.
*
* The resulting 64 bit integer is composed as follows:
*
* (high order bits) 6|6|6|6|6|6|6|6|6|10 (low order bits)
*
* The first 6 bits value is the first character, name[0], while the last
* 6 bits value, immediately before the 10 bits integer, is name[8].
* The last 10 bits are the encoding version.
*
* Note that a name and encver combo of "AAAAAAAAA" and 0, will produce
* zero as return value, that is the same we use to signal errors, thus
* this combination is invalid, and also useless since type names should
* try to be vary to avoid collisions. */
const char *ModuleTypeNameCharSet =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789-_";
uint64_t moduleTypeEncodeId(const char *name, int encver) {
/* We use 64 symbols so that we can map each character into 6 bits
* of the final output. */
const char *cset = ModuleTypeNameCharSet;
if (strlen(name) != 9) return 0;
if (encver < 0 || encver > 1023) return 0;
uint64_t id = 0;
for (int j = 0; j < 9; j++) {
char *p = strchr(cset,name[j]);
if (!p) return 0;
unsigned long pos = p-cset;
id = (id << 6) | pos;
}
id = (id << 10) | encver;
return id;
}
/* Search, in the list of exported data types of all the modules registered,
* a type with the same name as the one given. Returns the moduleType
* structure pointer if such a module is found, or NULL otherwise. */
moduleType *moduleTypeLookupModuleByName(const char *name) {
dictIterator *di = dictGetIterator(modules);
dictEntry *de;
while ((de = dictNext(di)) != NULL) {
struct RedisModule *module = dictGetVal(de);
listIter li;
listNode *ln;
listRewind(module->types,&li);
while((ln = listNext(&li))) {
moduleType *mt = ln->value;
if (memcmp(name,mt->name,sizeof(mt->name)) == 0) {
dictReleaseIterator(di);
return mt;
}
}
}
dictReleaseIterator(di);
return NULL;
}
/* Lookup a module by ID, with caching. This function is used during RDB
* loading. Modules exporting data types should never be able to unload, so
* our cache does not need to expire. */
#define MODULE_LOOKUP_CACHE_SIZE 3
moduleType *moduleTypeLookupModuleByID(uint64_t id) {
static struct {
uint64_t id;
moduleType *mt;
} cache[MODULE_LOOKUP_CACHE_SIZE];
/* Search in cache to start. */
int j;
for (j = 0; j < MODULE_LOOKUP_CACHE_SIZE && cache[j].mt != NULL; j++)
if (cache[j].id == id) return cache[j].mt;
/* Slow module by module lookup. */
moduleType *mt = NULL;
dictIterator *di = dictGetIterator(modules);
dictEntry *de;
while ((de = dictNext(di)) != NULL && mt == NULL) {
struct RedisModule *module = dictGetVal(de);
listIter li;
listNode *ln;
listRewind(module->types,&li);
while((ln = listNext(&li))) {
moduleType *this_mt = ln->value;
/* Compare only the 54 bit module identifier and not the
* encoding version. */
if (this_mt->id >> 10 == id >> 10) {
mt = this_mt;
break;
}
}
}
dictReleaseIterator(di);
/* Add to cache if possible. */
if (mt && j < MODULE_LOOKUP_CACHE_SIZE) {
cache[j].id = id;
cache[j].mt = mt;
}
return mt;
}
/* Turn an (unresolved) module ID into a type name, to show the user an
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
* error when RDB files contain module data we can't load.
* The buffer pointed by 'name' must be 10 bytes at least. The function will
* fill it with a null terminated module name. */
void moduleTypeNameByID(char *name, uint64_t moduleid) {
const char *cset = ModuleTypeNameCharSet;
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
name[9] = '\0';
char *p = name+8;
moduleid >>= 10;
for (int j = 0; j < 9; j++) {
*p-- = cset[moduleid & 63];
moduleid >>= 6;
}
}
/* Register a new data type exported by the module. The parameters are the
* following. Please for in depth documentation check the modules API
* documentation, especially the TYPES.md file.
*
* * **name**: A 9 characters data type name that MUST be unique in the Redis
* Modules ecosystem. Be creative... and there will be no collisions. Use
* the charset A-Z a-z 9-0, plus the two "-_" characters. A good
* idea is to use, for example `<typename>-<vendor>`. For example
* "tree-AntZ" may mean "Tree data structure by @antirez". To use both
* lower case and upper case letters helps in order to prevent collisions.
* * **encver**: Encoding version, which is, the version of the serialization
* that a module used in order to persist data. As long as the "name"
* matches, the RDB loading will be dispatched to the type callbacks
* whatever 'encver' is used, however the module can understand if
* the encoding it must load are of an older version of the module.
* For example the module "tree-AntZ" initially used encver=0. Later
* after an upgrade, it started to serialize data in a different format
* and to register the type with encver=1. However this module may
* still load old data produced by an older version if the rdb_load
* callback is able to check the encver value and act accordingly.
* The encver must be a positive value between 0 and 1023.
* * **typemethods_ptr** is a pointer to a RedisModuleTypeMethods structure
* that should be populated with the methods callbacks and structure
* version, like in the following example:
*
* RedisModuleTypeMethods tm = {
* .version = REDISMODULE_TYPE_METHOD_VERSION,
* .rdb_load = myType_RDBLoadCallBack,
* .rdb_save = myType_RDBSaveCallBack,
* .aof_rewrite = myType_AOFRewriteCallBack,
* .free = myType_FreeCallBack,
*
* // Optional fields
* .digest = myType_DigestCallBack,
* .mem_usage = myType_MemUsageCallBack,
* }
*
* * **rdb_load**: A callback function pointer that loads data from RDB files.
* * **rdb_save**: A callback function pointer that saves data to RDB files.
* * **aof_rewrite**: A callback function pointer that rewrites data as commands.
* * **digest**: A callback function pointer that is used for `DEBUG DIGEST`.
* * **free**: A callback function pointer that can free a type value.
*
* The **digest* and **mem_usage** methods should currently be omitted since
* they are not yet implemented inside the Redis modules core.
*
* Note: the module name "AAAAAAAAA" is reserved and produces an error, it
* happens to be pretty lame as well.
*
* If there is already a module registering a type with the same name,
* and if the module name or encver is invalid, NULL is returned.
* Otherwise the new type is registered into Redis, and a reference of
* type RedisModuleType is returned: the caller of the function should store
* this reference into a gobal variable to make future use of it in the
* modules type API, since a single module may register multiple types.
* Example code fragment:
*
* static RedisModuleType *BalancedTreeType;
*
* int RedisModule_OnLoad(RedisModuleCtx *ctx) {
* // some code here ...
* BalancedTreeType = RM_CreateDataType(...);
* }
*/
moduleType *RM_CreateDataType(RedisModuleCtx *ctx, const char *name, int encver, void *typemethods_ptr) {
uint64_t id = moduleTypeEncodeId(name,encver);
if (id == 0) return NULL;
if (moduleTypeLookupModuleByName(name) != NULL) return NULL;
long typemethods_version = ((long*)typemethods_ptr)[0];
if (typemethods_version == 0) return NULL;
struct typemethods {
uint64_t version;
moduleTypeLoadFunc rdb_load;
moduleTypeSaveFunc rdb_save;
moduleTypeRewriteFunc aof_rewrite;
moduleTypeMemUsageFunc mem_usage;
moduleTypeDigestFunc digest;
moduleTypeFreeFunc free;
} *tms = (struct typemethods*) typemethods_ptr;
moduleType *mt = zcalloc(sizeof(*mt));
mt->id = id;
mt->module = ctx->module;
mt->rdb_load = tms->rdb_load;
mt->rdb_save = tms->rdb_save;
mt->aof_rewrite = tms->aof_rewrite;
mt->mem_usage = tms->mem_usage;
mt->digest = tms->digest;
mt->free = tms->free;
memcpy(mt->name,name,sizeof(mt->name));
listAddNodeTail(ctx->module->types,mt);
return mt;
}
/* If the key is open for writing, set the specified module type object
* as the value of the key, deleting the old value if any.
* On success REDISMODULE_OK is returned. If the key is not open for
* writing or there is an active iterator, REDISMODULE_ERR is returned. */
int RM_ModuleTypeSetValue(RedisModuleKey *key, moduleType *mt, void *value) {
if (!(key->mode & REDISMODULE_WRITE) || key->iter) return REDISMODULE_ERR;
RM_DeleteKey(key);
robj *o = createModuleObject(mt,value);
setKey(key->db,key->key,o);
decrRefCount(o);
key->value = o;
return REDISMODULE_OK;
}
/* Assuming RedisModule_KeyType() returned REDISMODULE_KEYTYPE_MODULE on
* the key, returns the moduel type pointer of the value stored at key.
*
* If the key is NULL, is not associated with a module type, or is empty,
* then NULL is returned instead. */
moduleType *RM_ModuleTypeGetType(RedisModuleKey *key) {
if (key == NULL ||
key->value == NULL ||
RM_KeyType(key) != REDISMODULE_KEYTYPE_MODULE) return NULL;
moduleValue *mv = key->value->ptr;
return mv->type;
}
/* Assuming RedisModule_KeyType() returned REDISMODULE_KEYTYPE_MODULE on
* the key, returns the module type low-level value stored at key, as
* it was set by the user via RedisModule_ModuleTypeSet().
*
* If the key is NULL, is not associated with a module type, or is empty,
* then NULL is returned instead. */
void *RM_ModuleTypeGetValue(RedisModuleKey *key) {
if (key == NULL ||
key->value == NULL ||
RM_KeyType(key) != REDISMODULE_KEYTYPE_MODULE) return NULL;
moduleValue *mv = key->value->ptr;
return mv->value;
}
/* --------------------------------------------------------------------------
* RDB loading and saving functions
* -------------------------------------------------------------------------- */
/* Called when there is a load error in the context of a module. This cannot
* be recovered like for the built-in types. */
void moduleRDBLoadError(RedisModuleIO *io) {
serverLog(LL_WARNING,
"Error loading data from RDB (short read or EOF). "
"Read performed by module '%s' about type '%s' "
"after reading '%llu' bytes of a value.",
io->type->module->name,
io->type->name,
(unsigned long long)io->bytes);
exit(1);
}
/* Save an unsigned 64 bit value into the RDB file. This function should only
* be called in the context of the rdb_save method of modules implementing new
* data types. */
void RM_SaveUnsigned(RedisModuleIO *io, uint64_t value) {
if (io->error) return;
/* Save opcode. */
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
int retval = rdbSaveLen(io->rio, RDB_MODULE_OPCODE_UINT);
if (retval == -1) goto saveerr;
io->bytes += retval;
/* Save value. */
retval = rdbSaveLen(io->rio, value);
if (retval == -1) goto saveerr;
io->bytes += retval;
return;
saveerr:
io->error = 1;
}
/* Load an unsigned 64 bit value from the RDB file. This function should only
* be called in the context of the rdb_load method of modules implementing
* new data types. */
uint64_t RM_LoadUnsigned(RedisModuleIO *io) {
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
if (io->ver == 2) {
uint64_t opcode = rdbLoadLen(io->rio,NULL);
if (opcode != RDB_MODULE_OPCODE_UINT) goto loaderr;
}
uint64_t value;
int retval = rdbLoadLenByRef(io->rio, NULL, &value);
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
if (retval == -1) goto loaderr;
return value;
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
loaderr:
moduleRDBLoadError(io);
return 0; /* Never reached. */
}
/* Like RedisModule_SaveUnsigned() but for signed 64 bit values. */
void RM_SaveSigned(RedisModuleIO *io, int64_t value) {
union {uint64_t u; int64_t i;} conv;
conv.i = value;
RM_SaveUnsigned(io,conv.u);
}
/* Like RedisModule_LoadUnsigned() but for signed 64 bit values. */
int64_t RM_LoadSigned(RedisModuleIO *io) {
union {uint64_t u; int64_t i;} conv;
conv.u = RM_LoadUnsigned(io);
return conv.i;
}
/* In the context of the rdb_save method of a module type, saves a
* string into the RDB file taking as input a RedisModuleString.
*
* The string can be later loaded with RedisModule_LoadString() or
* other Load family functions expecting a serialized string inside
* the RDB file. */
void RM_SaveString(RedisModuleIO *io, RedisModuleString *s) {
if (io->error) return;
/* Save opcode. */
ssize_t retval = rdbSaveLen(io->rio, RDB_MODULE_OPCODE_STRING);
if (retval == -1) goto saveerr;
io->bytes += retval;
/* Save value. */
retval = rdbSaveStringObject(io->rio, s);
if (retval == -1) goto saveerr;
io->bytes += retval;
return;
saveerr:
io->error = 1;
}
/* Like RedisModule_SaveString() but takes a raw C pointer and length
* as input. */
void RM_SaveStringBuffer(RedisModuleIO *io, const char *str, size_t len) {
if (io->error) return;
/* Save opcode. */
ssize_t retval = rdbSaveLen(io->rio, RDB_MODULE_OPCODE_STRING);
if (retval == -1) goto saveerr;
io->bytes += retval;
/* Save value. */
retval = rdbSaveRawString(io->rio, (unsigned char*)str,len);
if (retval == -1) goto saveerr;
io->bytes += retval;
return;
saveerr:
io->error = 1;
}
/* Implements RM_LoadString() and RM_LoadStringBuffer() */
void *moduleLoadString(RedisModuleIO *io, int plain, size_t *lenptr) {
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
if (io->ver == 2) {
uint64_t opcode = rdbLoadLen(io->rio,NULL);
if (opcode != RDB_MODULE_OPCODE_STRING) goto loaderr;
}
void *s = rdbGenericLoadStringObject(io->rio,
plain ? RDB_LOAD_PLAIN : RDB_LOAD_NONE, lenptr);
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
if (s == NULL) goto loaderr;
return s;
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
loaderr:
moduleRDBLoadError(io);
return NULL; /* Never reached. */
}
/* In the context of the rdb_load method of a module data type, loads a string
* from the RDB file, that was previously saved with RedisModule_SaveString()
* functions family.
*
* The returned string is a newly allocated RedisModuleString object, and
* the user should at some point free it with a call to RedisModule_FreeString().
*
* If the data structure does not store strings as RedisModuleString objects,
* the similar function RedisModule_LoadStringBuffer() could be used instead. */
RedisModuleString *RM_LoadString(RedisModuleIO *io) {
return moduleLoadString(io,0,NULL);
}
/* Like RedisModule_LoadString() but returns an heap allocated string that
* was allocated with RedisModule_Alloc(), and can be resized or freed with
* RedisModule_Realloc() or RedisModule_Free().
*
* The size of the string is stored at '*lenptr' if not NULL.
* The returned string is not automatically NULL termianted, it is loaded
* exactly as it was stored inisde the RDB file. */
char *RM_LoadStringBuffer(RedisModuleIO *io, size_t *lenptr) {
return moduleLoadString(io,1,lenptr);
}
/* In the context of the rdb_save method of a module data type, saves a double
* value to the RDB file. The double can be a valid number, a NaN or infinity.
* It is possible to load back the value with RedisModule_LoadDouble(). */
void RM_SaveDouble(RedisModuleIO *io, double value) {
if (io->error) return;
/* Save opcode. */
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
int retval = rdbSaveLen(io->rio, RDB_MODULE_OPCODE_DOUBLE);
if (retval == -1) goto saveerr;
io->bytes += retval;
/* Save value. */
retval = rdbSaveBinaryDoubleValue(io->rio, value);
if (retval == -1) goto saveerr;
io->bytes += retval;
return;
saveerr:
io->error = 1;
}
/* In the context of the rdb_save method of a module data type, loads back the
* double value saved by RedisModule_SaveDouble(). */
double RM_LoadDouble(RedisModuleIO *io) {
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
if (io->ver == 2) {
uint64_t opcode = rdbLoadLen(io->rio,NULL);
if (opcode != RDB_MODULE_OPCODE_DOUBLE) goto loaderr;
}
double value;
int retval = rdbLoadBinaryDoubleValue(io->rio, &value);
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
if (retval == -1) goto loaderr;
return value;
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
loaderr:
moduleRDBLoadError(io);
return 0; /* Never reached. */
}
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
/* In the context of the rdb_save method of a module data type, saves a float
* value to the RDB file. The float can be a valid number, a NaN or infinity.
* It is possible to load back the value with RedisModule_LoadFloat(). */
void RM_SaveFloat(RedisModuleIO *io, float value) {
if (io->error) return;
/* Save opcode. */
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
int retval = rdbSaveLen(io->rio, RDB_MODULE_OPCODE_FLOAT);
if (retval == -1) goto saveerr;
io->bytes += retval;
/* Save value. */
retval = rdbSaveBinaryFloatValue(io->rio, value);
if (retval == -1) goto saveerr;
io->bytes += retval;
return;
saveerr:
io->error = 1;
}
/* In the context of the rdb_save method of a module data type, loads back the
* float value saved by RedisModule_SaveFloat(). */
float RM_LoadFloat(RedisModuleIO *io) {
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
if (io->ver == 2) {
uint64_t opcode = rdbLoadLen(io->rio,NULL);
if (opcode != RDB_MODULE_OPCODE_FLOAT) goto loaderr;
}
float value;
int retval = rdbLoadBinaryFloatValue(io->rio, &value);
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
if (retval == -1) goto loaderr;
return value;
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
loaderr:
moduleRDBLoadError(io);
return 0; /* Never reached. */
}
2017-07-06 10:29:19 +02:00
/* --------------------------------------------------------------------------
* Key digest API (DEBUG DIGEST interface for modules types)
* -------------------------------------------------------------------------- */
/* Add a new element to the digest. This function can be called multiple times
* one element after the other, for all the elements that constitute a given
* data structure. The function call must be followed by the call to
* `RedisModule_DigestEndSequence` eventually, when all the elements that are
* always in a given order are added. See the Redis Modules data types
* documentation for more info. However this is a quick example that uses Redis
* data types as an example.
*
* To add a sequence of unordered elements (for example in the case of a Redis
* Set), the pattern to use is:
*
* foreach element {
* AddElement(element);
* EndSequence();
* }
2017-07-06 10:29:19 +02:00
*
* Because Sets are not ordered, so every element added has a position that
* does not depend from the other. However if instead our elements are
* ordered in pairs, like field-value pairs of an Hash, then one should
* use:
*
* foreach key,value {
* AddElement(key);
* AddElement(value);
* EndSquence();
* }
2017-07-06 10:29:19 +02:00
*
* Because the key and value will be always in the above order, while instead
* the single key-value pairs, can appear in any position into a Redis hash.
*
* A list of ordered elements would be implemented with:
*
* foreach element {
* AddElement(element);
* }
* EndSequence();
2017-07-06 10:29:19 +02:00
*
*/
void RM_DigestAddStringBuffer(RedisModuleDigest *md, unsigned char *ele, size_t len) {
mixDigest(md->o,ele,len);
}
/* Like `RedisModule_DigestAddStringBuffer()` but takes a long long as input
* that gets converted into a string before adding it to the digest. */
void RM_DigestAddLongLong(RedisModuleDigest *md, long long ll) {
char buf[LONG_STR_SIZE];
size_t len = ll2string(buf,sizeof(buf),ll);
mixDigest(md->o,buf,len);
}
/* See the doucmnetation for `RedisModule_DigestAddElement()`. */
void RM_DigestEndSequence(RedisModuleDigest *md) {
xorDigest(md->x,md->o,sizeof(md->o));
memset(md->o,0,sizeof(md->o));
}
/* --------------------------------------------------------------------------
* AOF API for modules data types
* -------------------------------------------------------------------------- */
/* Emits a command into the AOF during the AOF rewriting process. This function
* is only called in the context of the aof_rewrite method of data types exported
* by a module. The command works exactly like RedisModule_Call() in the way
* the parameters are passed, but it does not return anything as the error
* handling is performed by Redis itself. */
void RM_EmitAOF(RedisModuleIO *io, const char *cmdname, const char *fmt, ...) {
if (io->error) return;
struct redisCommand *cmd;
robj **argv = NULL;
int argc = 0, flags = 0, j;
va_list ap;
cmd = lookupCommandByCString((char*)cmdname);
if (!cmd) {
serverLog(LL_WARNING,
"Fatal: AOF method for module data type '%s' tried to "
"emit unknown command '%s'",
io->type->name, cmdname);
io->error = 1;
errno = EINVAL;
return;
}
/* Emit the arguments into the AOF in Redis protocol format. */
va_start(ap, fmt);
argv = moduleCreateArgvFromUserFormat(cmdname,fmt,&argc,&flags,ap);
va_end(ap);
if (argv == NULL) {
serverLog(LL_WARNING,
"Fatal: AOF method for module data type '%s' tried to "
"call RedisModule_EmitAOF() with wrong format specifiers '%s'",
io->type->name, fmt);
io->error = 1;
errno = EINVAL;
return;
}
/* Bulk count. */
if (!io->error && rioWriteBulkCount(io->rio,'*',argc) == 0)
io->error = 1;
/* Arguments. */
for (j = 0; j < argc; j++) {
if (!io->error && rioWriteBulkObject(io->rio,argv[j]) == 0)
io->error = 1;
decrRefCount(argv[j]);
}
zfree(argv);
return;
}
/* --------------------------------------------------------------------------
* IO context handling
* -------------------------------------------------------------------------- */
RedisModuleCtx *RM_GetContextFromIO(RedisModuleIO *io) {
if (io->ctx) return io->ctx; /* Can't have more than one... */
RedisModuleCtx ctxtemplate = REDISMODULE_CTX_INIT;
io->ctx = zmalloc(sizeof(RedisModuleCtx));
*(io->ctx) = ctxtemplate;
io->ctx->module = io->type->module;
io->ctx->client = NULL;
return io->ctx;
}
/* --------------------------------------------------------------------------
* Logging
* -------------------------------------------------------------------------- */
/* This is the low level function implementing both:
*
* RM_Log()
* RM_LogIOError()
*
*/
void RM_LogRaw(RedisModule *module, const char *levelstr, const char *fmt, va_list ap) {
char msg[LOG_MAX_LEN];
size_t name_len;
int level;
if (!strcasecmp(levelstr,"debug")) level = LL_DEBUG;
else if (!strcasecmp(levelstr,"verbose")) level = LL_VERBOSE;
else if (!strcasecmp(levelstr,"notice")) level = LL_NOTICE;
else if (!strcasecmp(levelstr,"warning")) level = LL_WARNING;
else level = LL_VERBOSE; /* Default. */
name_len = snprintf(msg, sizeof(msg),"<%s> ", module->name);
vsnprintf(msg + name_len, sizeof(msg) - name_len, fmt, ap);
serverLogRaw(level,msg);
}
/* Produces a log message to the standard Redis log, the format accepts
* printf-alike specifiers, while level is a string describing the log
* level to use when emitting the log, and must be one of the following:
*
* * "debug"
* * "verbose"
* * "notice"
* * "warning"
*
* If the specified log level is invalid, verbose is used by default.
* There is a fixed limit to the length of the log line this function is able
2018-06-21 22:08:09 +08:00
* to emit, this limit is not specified but is guaranteed to be more than
* a few lines of text.
*/
void RM_Log(RedisModuleCtx *ctx, const char *levelstr, const char *fmt, ...) {
if (!ctx->module) return; /* Can only log if module is initialized */
va_list ap;
va_start(ap, fmt);
RM_LogRaw(ctx->module,levelstr,fmt,ap);
va_end(ap);
}
/* Log errors from RDB / AOF serialization callbacks.
*
* This function should be used when a callback is returning a critical
* error to the caller since cannot load or save the data for some
* critical reason. */
void RM_LogIOError(RedisModuleIO *io, const char *levelstr, const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
RM_LogRaw(io->type->module,levelstr,fmt,ap);
va_end(ap);
}
/* --------------------------------------------------------------------------
* Blocking clients from modules
* -------------------------------------------------------------------------- */
/* Readable handler for the awake pipe. We do nothing here, the awake bytes
* will be actually read in a more appropriate place in the
* moduleHandleBlockedClients() function that is where clients are actually
* served. */
void moduleBlockedClientPipeReadable(aeEventLoop *el, int fd, void *privdata, int mask) {
UNUSED(el);
UNUSED(fd);
UNUSED(mask);
UNUSED(privdata);
}
/* This is called from blocked.c in order to unblock a client: may be called
* for multiple reasons while the client is in the middle of being blocked
* because the client is terminated, but is also called for cleanup when a
* client is unblocked in a clean way after replaying.
*
* What we do here is just to set the client to NULL in the redis module
* blocked client handle. This way if the client is terminated while there
* is a pending threaded operation involving the blocked client, we'll know
* that the client no longer exists and no reply callback should be called.
*
* The structure RedisModuleBlockedClient will be always deallocated when
* running the list of clients blocked by a module that need to be unblocked. */
void unblockClientFromModule(client *c) {
RedisModuleBlockedClient *bc = c->bpop.module_blocked_handle;
/* Call the disconnection callback if any. */
if (bc->disconnect_callback) {
RedisModuleCtx ctx = REDISMODULE_CTX_INIT;
ctx.blocked_privdata = bc->privdata;
ctx.module = bc->module;
ctx.client = bc->client;
bc->disconnect_callback(&ctx,bc);
moduleFreeContext(&ctx);
}
bc->client = NULL;
/* Reset the client for a new query since, for blocking commands implemented
* into modules, we do not it immediately after the command returns (and
* the client blocks) in order to be still able to access the argument
* vector from callbacks. */
resetClient(c);
}
/* Block a client in the context of a blocking command, returning an handle
* which will be used, later, in order to unblock the client with a call to
* RedisModule_UnblockClient(). The arguments specify callback functions
* and a timeout after which the client is unblocked.
*
* The callbacks are called in the following contexts:
*
* reply_callback: called after a successful RedisModule_UnblockClient()
* call in order to reply to the client and unblock it.
*
* reply_timeout: called when the timeout is reached in order to send an
* error to the client.
*
* free_privdata: called in order to free the privata data that is passed
* by RedisModule_UnblockClient() call.
*/
RedisModuleBlockedClient *RM_BlockClient(RedisModuleCtx *ctx, RedisModuleCmdFunc reply_callback, RedisModuleCmdFunc timeout_callback, void (*free_privdata)(RedisModuleCtx*,void*), long long timeout_ms) {
client *c = ctx->client;
Modules: don't crash when Lua calls a module blocking command. Lua scripting does not support calling blocking commands, however all the native Redis commands are flagged as "s" (no scripting flag), so this is not possible at all. With modules there is no such mechanism in order to flag a command as non callable by the Lua scripting engine, moreover we cannot trust the modules users from complying all the times: it is likely that modules will be released to have blocking commands without such commands being flagged correctly, even if we provide a way to signal this fact. This commit attempts to address the problem in a short term way, by detecting that a module is trying to block in the context of the Lua scripting engine client, and preventing to do this. The module will actually believe to block as usually, but what happens is that the Lua script receives an error immediately, and the background call is ignored by the Redis engine (if not for the cleanup callbacks, once it unblocks). Long term, the more likely solution, is to introduce a new call called RedisModule_GetClientFlags(), so that a command can detect if the caller is a Lua script, and return an error, or avoid blocking at all. Being the blocking API experimental right now, more work is needed in this regard in order to reach a level well blocking module commands and all the other Redis subsystems interact peacefully. Now the effect is like the following: 127.0.0.1:6379> eval "redis.call('hello.block',1,5000)" 0 (error) ERR Error running script (call to f_b5ba35ff97bc1ef23debc4d6e9fd802da187ed53): @user_script:1: ERR Blocking module command called from Lua script This commit fixes issue #4127 in the short term.
2017-07-23 12:55:37 +02:00
int islua = c->flags & CLIENT_LUA;
int ismulti = c->flags & CLIENT_MULTI;
Modules: don't crash when Lua calls a module blocking command. Lua scripting does not support calling blocking commands, however all the native Redis commands are flagged as "s" (no scripting flag), so this is not possible at all. With modules there is no such mechanism in order to flag a command as non callable by the Lua scripting engine, moreover we cannot trust the modules users from complying all the times: it is likely that modules will be released to have blocking commands without such commands being flagged correctly, even if we provide a way to signal this fact. This commit attempts to address the problem in a short term way, by detecting that a module is trying to block in the context of the Lua scripting engine client, and preventing to do this. The module will actually believe to block as usually, but what happens is that the Lua script receives an error immediately, and the background call is ignored by the Redis engine (if not for the cleanup callbacks, once it unblocks). Long term, the more likely solution, is to introduce a new call called RedisModule_GetClientFlags(), so that a command can detect if the caller is a Lua script, and return an error, or avoid blocking at all. Being the blocking API experimental right now, more work is needed in this regard in order to reach a level well blocking module commands and all the other Redis subsystems interact peacefully. Now the effect is like the following: 127.0.0.1:6379> eval "redis.call('hello.block',1,5000)" 0 (error) ERR Error running script (call to f_b5ba35ff97bc1ef23debc4d6e9fd802da187ed53): @user_script:1: ERR Blocking module command called from Lua script This commit fixes issue #4127 in the short term.
2017-07-23 12:55:37 +02:00
c->bpop.module_blocked_handle = zmalloc(sizeof(RedisModuleBlockedClient));
RedisModuleBlockedClient *bc = c->bpop.module_blocked_handle;
Modules: don't crash when Lua calls a module blocking command. Lua scripting does not support calling blocking commands, however all the native Redis commands are flagged as "s" (no scripting flag), so this is not possible at all. With modules there is no such mechanism in order to flag a command as non callable by the Lua scripting engine, moreover we cannot trust the modules users from complying all the times: it is likely that modules will be released to have blocking commands without such commands being flagged correctly, even if we provide a way to signal this fact. This commit attempts to address the problem in a short term way, by detecting that a module is trying to block in the context of the Lua scripting engine client, and preventing to do this. The module will actually believe to block as usually, but what happens is that the Lua script receives an error immediately, and the background call is ignored by the Redis engine (if not for the cleanup callbacks, once it unblocks). Long term, the more likely solution, is to introduce a new call called RedisModule_GetClientFlags(), so that a command can detect if the caller is a Lua script, and return an error, or avoid blocking at all. Being the blocking API experimental right now, more work is needed in this regard in order to reach a level well blocking module commands and all the other Redis subsystems interact peacefully. Now the effect is like the following: 127.0.0.1:6379> eval "redis.call('hello.block',1,5000)" 0 (error) ERR Error running script (call to f_b5ba35ff97bc1ef23debc4d6e9fd802da187ed53): @user_script:1: ERR Blocking module command called from Lua script This commit fixes issue #4127 in the short term.
2017-07-23 12:55:37 +02:00
/* We need to handle the invalid operation of calling modules blocking
* commands from Lua or MULTI. We actually create an already aborted
* (client set to NULL) blocked client handle, and actually reply with
* an error. */
bc->client = (islua || ismulti) ? NULL : c;
bc->module = ctx->module;
bc->reply_callback = reply_callback;
bc->timeout_callback = timeout_callback;
bc->disconnect_callback = NULL; /* Set by RM_SetDisconnectCallback() */
bc->free_privdata = free_privdata;
bc->privdata = NULL;
bc->reply_client = createClient(-1);
bc->reply_client->flags |= CLIENT_MODULE;
bc->dbid = c->db->id;
c->bpop.timeout = timeout_ms ? (mstime()+timeout_ms) : 0;
if (islua || ismulti) {
Modules: don't crash when Lua calls a module blocking command. Lua scripting does not support calling blocking commands, however all the native Redis commands are flagged as "s" (no scripting flag), so this is not possible at all. With modules there is no such mechanism in order to flag a command as non callable by the Lua scripting engine, moreover we cannot trust the modules users from complying all the times: it is likely that modules will be released to have blocking commands without such commands being flagged correctly, even if we provide a way to signal this fact. This commit attempts to address the problem in a short term way, by detecting that a module is trying to block in the context of the Lua scripting engine client, and preventing to do this. The module will actually believe to block as usually, but what happens is that the Lua script receives an error immediately, and the background call is ignored by the Redis engine (if not for the cleanup callbacks, once it unblocks). Long term, the more likely solution, is to introduce a new call called RedisModule_GetClientFlags(), so that a command can detect if the caller is a Lua script, and return an error, or avoid blocking at all. Being the blocking API experimental right now, more work is needed in this regard in order to reach a level well blocking module commands and all the other Redis subsystems interact peacefully. Now the effect is like the following: 127.0.0.1:6379> eval "redis.call('hello.block',1,5000)" 0 (error) ERR Error running script (call to f_b5ba35ff97bc1ef23debc4d6e9fd802da187ed53): @user_script:1: ERR Blocking module command called from Lua script This commit fixes issue #4127 in the short term.
2017-07-23 12:55:37 +02:00
c->bpop.module_blocked_handle = NULL;
addReplyError(c, islua ?
"Blocking module command called from Lua script" :
"Blocking module command called from transaction");
Modules: don't crash when Lua calls a module blocking command. Lua scripting does not support calling blocking commands, however all the native Redis commands are flagged as "s" (no scripting flag), so this is not possible at all. With modules there is no such mechanism in order to flag a command as non callable by the Lua scripting engine, moreover we cannot trust the modules users from complying all the times: it is likely that modules will be released to have blocking commands without such commands being flagged correctly, even if we provide a way to signal this fact. This commit attempts to address the problem in a short term way, by detecting that a module is trying to block in the context of the Lua scripting engine client, and preventing to do this. The module will actually believe to block as usually, but what happens is that the Lua script receives an error immediately, and the background call is ignored by the Redis engine (if not for the cleanup callbacks, once it unblocks). Long term, the more likely solution, is to introduce a new call called RedisModule_GetClientFlags(), so that a command can detect if the caller is a Lua script, and return an error, or avoid blocking at all. Being the blocking API experimental right now, more work is needed in this regard in order to reach a level well blocking module commands and all the other Redis subsystems interact peacefully. Now the effect is like the following: 127.0.0.1:6379> eval "redis.call('hello.block',1,5000)" 0 (error) ERR Error running script (call to f_b5ba35ff97bc1ef23debc4d6e9fd802da187ed53): @user_script:1: ERR Blocking module command called from Lua script This commit fixes issue #4127 in the short term.
2017-07-23 12:55:37 +02:00
} else {
blockClient(c,BLOCKED_MODULE);
}
return bc;
}
/* Unblock a client blocked by `RedisModule_BlockedClient`. This will trigger
* the reply callbacks to be called in order to reply to the client.
* The 'privdata' argument will be accessible by the reply callback, so
* the caller of this function can pass any value that is needed in order to
* actually reply to the client.
*
* A common usage for 'privdata' is a thread that computes something that
* needs to be passed to the client, included but not limited some slow
* to compute reply or some reply obtained via networking.
*
* Note: this function can be called from threads spawned by the module. */
int RM_UnblockClient(RedisModuleBlockedClient *bc, void *privdata) {
pthread_mutex_lock(&moduleUnblockedClientsMutex);
bc->privdata = privdata;
listAddNodeTail(moduleUnblockedClients,bc);
if (write(server.module_blocked_pipe[1],"A",1) != 1) {
/* Ignore the error, this is best-effort. */
}
pthread_mutex_unlock(&moduleUnblockedClientsMutex);
return REDISMODULE_OK;
}
2016-10-13 16:57:40 +02:00
/* Abort a blocked client blocking operation: the client will be unblocked
* without firing any callback. */
2016-10-13 16:57:40 +02:00
int RM_AbortBlock(RedisModuleBlockedClient *bc) {
bc->reply_callback = NULL;
bc->disconnect_callback = NULL;
2016-10-13 16:57:40 +02:00
return RM_UnblockClient(bc,NULL);
}
/* Set a callback that will be called if a blocked client disconnects
* before the module has a chance to call RedisModule_UnblockClient()
*
* Usually what you want to do there, is to cleanup your module state
* so that you can call RedisModule_UnblockClient() safely, otherwise
* the client will remain blocked forever if the timeout is large.
*
* Notes:
*
* 1. It is not safe to call Reply* family functions here, it is also
* useless since the client is gone.
*
* 2. This callback is not called if the client disconnects because of
* a timeout. In such a case, the client is unblocked automatically
* and the timeout callback is called.
*/
void RM_SetDisconnectCallback(RedisModuleBlockedClient *bc, RedisModuleDisconnectFunc callback) {
bc->disconnect_callback = callback;
}
/* This function will check the moduleUnblockedClients queue in order to
* call the reply callback and really unblock the client.
*
* Clients end into this list because of calls to RM_UnblockClient(),
* however it is possible that while the module was doing work for the
* blocked client, it was terminated by Redis (for timeout or other reasons).
* When this happens the RedisModuleBlockedClient structure in the queue
* will have the 'client' field set to NULL. */
void moduleHandleBlockedClients(void) {
listNode *ln;
RedisModuleBlockedClient *bc;
pthread_mutex_lock(&moduleUnblockedClientsMutex);
/* Here we unblock all the pending clients blocked in modules operations
* so we can read every pending "awake byte" in the pipe. */
char buf[1];
while (read(server.module_blocked_pipe[0],buf,1) == 1);
while (listLength(moduleUnblockedClients)) {
ln = listFirst(moduleUnblockedClients);
bc = ln->value;
client *c = bc->client;
listDelNode(moduleUnblockedClients,ln);
pthread_mutex_unlock(&moduleUnblockedClientsMutex);
/* Release the lock during the loop, as long as we don't
* touch the shared list. */
/* Call the reply callback if the client is valid and we have
* any callback. */
if (c && bc->reply_callback) {
RedisModuleCtx ctx = REDISMODULE_CTX_INIT;
ctx.flags |= REDISMODULE_CTX_BLOCKED_REPLY;
ctx.blocked_privdata = bc->privdata;
ctx.module = bc->module;
ctx.client = bc->client;
ctx.blocked_client = bc;
bc->reply_callback(&ctx,(void**)c->argv,c->argc);
moduleHandlePropagationAfterCommandCallback(&ctx);
moduleFreeContext(&ctx);
}
/* Free privdata if any. */
if (bc->privdata && bc->free_privdata) {
RedisModuleCtx ctx = REDISMODULE_CTX_INIT;
if (c == NULL)
ctx.flags |= REDISMODULE_CTX_BLOCKED_DISCONNECTED;
ctx.blocked_privdata = bc->privdata;
ctx.module = bc->module;
ctx.client = bc->client;
bc->free_privdata(&ctx,bc->privdata);
moduleFreeContext(&ctx);
}
/* It is possible that this blocked client object accumulated
* replies to send to the client in a thread safe context.
* We need to glue such replies to the client output buffer and
* free the temporary client we just used for the replies. */
if (c) {
if (bc->reply_client->bufpos)
addReplyString(c,bc->reply_client->buf,
bc->reply_client->bufpos);
if (listLength(bc->reply_client->reply))
listJoin(c->reply,bc->reply_client->reply);
2017-07-03 23:58:50 +03:00
c->reply_bytes += bc->reply_client->reply_bytes;
}
freeClient(bc->reply_client);
if (c != NULL) {
/* Before unblocking the client, set the disconnect callback
* to NULL, because if we reached this point, the client was
* properly unblocked by the module. */
bc->disconnect_callback = NULL;
unblockClient(c);
/* Put the client in the list of clients that need to write
* if there are pending replies here. This is needed since
* during a non blocking command the client may receive output. */
if (clientHasPendingReplies(c) &&
!(c->flags & CLIENT_PENDING_WRITE))
{
c->flags |= CLIENT_PENDING_WRITE;
listAddNodeHead(server.clients_pending_write,c);
}
}
/* Free 'bc' only after unblocking the client, since it is
* referenced in the client blocking context, and must be valid
* when calling unblockClient(). */
zfree(bc);
/* Lock again before to iterate the loop. */
pthread_mutex_lock(&moduleUnblockedClientsMutex);
}
pthread_mutex_unlock(&moduleUnblockedClientsMutex);
}
/* Called when our client timed out. After this function unblockClient()
* is called, and it will invalidate the blocked client. So this function
* does not need to do any cleanup. Eventually the module will call the
* API to unblock the client and the memory will be released. */
void moduleBlockedClientTimedOut(client *c) {
RedisModuleBlockedClient *bc = c->bpop.module_blocked_handle;
RedisModuleCtx ctx = REDISMODULE_CTX_INIT;
ctx.flags |= REDISMODULE_CTX_BLOCKED_TIMEOUT;
ctx.module = bc->module;
ctx.client = bc->client;
ctx.blocked_client = bc;
bc->timeout_callback(&ctx,(void**)c->argv,c->argc);
moduleFreeContext(&ctx);
/* For timeout events, we do not want to call the disconnect callback,
* because the blocekd client will be automatically disconnected in
* this case, and the user can still hook using the timeout callback. */
bc->disconnect_callback = NULL;
}
/* Return non-zero if a module command was called in order to fill the
* reply for a blocked client. */
int RM_IsBlockedReplyRequest(RedisModuleCtx *ctx) {
return (ctx->flags & REDISMODULE_CTX_BLOCKED_REPLY) != 0;
}
/* Return non-zero if a module command was called in order to fill the
* reply for a blocked client that timed out. */
int RM_IsBlockedTimeoutRequest(RedisModuleCtx *ctx) {
return (ctx->flags & REDISMODULE_CTX_BLOCKED_TIMEOUT) != 0;
}
/* Get the privata data set by RedisModule_UnblockClient() */
void *RM_GetBlockedClientPrivateData(RedisModuleCtx *ctx) {
return ctx->blocked_privdata;
}
/* Get the blocked client associated with a given context.
* This is useful in the reply and timeout callbacks of blocked clients,
* before sometimes the module has the blocked client handle references
* around, and wants to cleanup it. */
RedisModuleBlockedClient *RM_GetBlockedClientHandle(RedisModuleCtx *ctx) {
return ctx->blocked_client;
}
/* Return true if when the free callback of a blocked client is called,
* the reason for the client to be unblocked is that it disconnected
* while it was blocked. */
int RM_BlockedClientDisconnected(RedisModuleCtx *ctx) {
return (ctx->flags & REDISMODULE_CTX_BLOCKED_DISCONNECTED) != 0;
}
/* --------------------------------------------------------------------------
* Thread Safe Contexts
* -------------------------------------------------------------------------- */
/* Return a context which can be used inside threads to make Redis context
* calls with certain modules APIs. If 'bc' is not NULL then the module will
* be bound to a blocked client, and it will be possible to use the
* `RedisModule_Reply*` family of functions to accumulate a reply for when the
* client will be unblocked. Otherwise the thread safe context will be
* detached by a specific client.
*
* To call non-reply APIs, the thread safe context must be prepared with:
*
* RedisModule_ThreadSafeCallStart(ctx);
* ... make your call here ...
* RedisModule_ThreadSafeCallStop(ctx);
*
* This is not needed when using `RedisModule_Reply*` functions, assuming
* that a blocked client was used when the context was created, otherwise
* no RedisModule_Reply* call should be made at all.
*
* TODO: thread safe contexts do not inherit the blocked client
* selected database. */
RedisModuleCtx *RM_GetThreadSafeContext(RedisModuleBlockedClient *bc) {
RedisModuleCtx *ctx = zmalloc(sizeof(*ctx));
RedisModuleCtx empty = REDISMODULE_CTX_INIT;
memcpy(ctx,&empty,sizeof(empty));
if (bc) {
ctx->blocked_client = bc;
ctx->module = bc->module;
}
ctx->flags |= REDISMODULE_CTX_THREAD_SAFE;
/* Even when the context is associated with a blocked client, we can't
* access it safely from another thread, so we create a fake client here
* in order to keep things like the currently selected database and similar
* things. */
ctx->client = createClient(-1);
if (bc) selectDb(ctx->client,bc->dbid);
return ctx;
}
/* Release a thread safe context. */
void RM_FreeThreadSafeContext(RedisModuleCtx *ctx) {
moduleFreeContext(ctx);
zfree(ctx);
}
/* Acquire the server lock before executing a thread safe API call.
* This is not needed for `RedisModule_Reply*` calls when there is
* a blocked client connected to the thread safe context. */
void RM_ThreadSafeContextLock(RedisModuleCtx *ctx) {
UNUSED(ctx);
moduleAcquireGIL();
}
/* Release the server lock after a thread safe API call was executed. */
void RM_ThreadSafeContextUnlock(RedisModuleCtx *ctx) {
UNUSED(ctx);
moduleReleaseGIL();
}
void moduleAcquireGIL(void) {
pthread_mutex_lock(&moduleGIL);
}
void moduleReleaseGIL(void) {
pthread_mutex_unlock(&moduleGIL);
}
/* --------------------------------------------------------------------------
* Module Keyspace Notifications API
* -------------------------------------------------------------------------- */
/* Subscribe to keyspace notifications. This is a low-level version of the
2018-07-30 16:18:56 +03:00
* keyspace-notifications API. A module can register callbacks to be notified
* when keyspce events occur.
*
* Notification events are filtered by their type (string events, set events,
2018-07-30 16:18:56 +03:00
* etc), and the subscriber callback receives only events that match a specific
* mask of event types.
*
2017-11-27 23:27:20 +02:00
* When subscribing to notifications with RedisModule_SubscribeToKeyspaceEvents
* the module must provide an event type-mask, denoting the events the subscriber
* is interested in. This can be an ORed mask of any of the following flags:
*
2017-11-27 23:27:20 +02:00
* - REDISMODULE_NOTIFY_GENERIC: Generic commands like DEL, EXPIRE, RENAME
* - REDISMODULE_NOTIFY_STRING: String events
* - REDISMODULE_NOTIFY_LIST: List events
* - REDISMODULE_NOTIFY_SET: Set events
* - REDISMODULE_NOTIFY_HASH: Hash events
* - REDISMODULE_NOTIFY_ZSET: Sorted Set events
* - REDISMODULE_NOTIFY_EXPIRED: Expiration events
* - REDISMODULE_NOTIFY_EVICTED: Eviction events
* - REDISMODULE_NOTIFY_STREAM: Stream events
2017-11-27 23:27:20 +02:00
* - REDISMODULE_NOTIFY_ALL: All events
*
* We do not distinguish between key events and keyspace events, and it is up
* to the module to filter the actions taken based on the key.
*
* The subscriber signature is:
*
* int (*RedisModuleNotificationFunc) (RedisModuleCtx *ctx, int type,
* const char *event,
* RedisModuleString *key);
*
* `type` is the event type bit, that must match the mask given at registration
* time. The event string is the actual command being executed, and key is the
* relevant Redis key.
*
2017-11-27 23:27:20 +02:00
* Notification callback gets executed with a redis context that can not be
* used to send anything to the client, and has the db number where the event
2018-07-01 13:24:50 +08:00
* occurred as its selected db number.
*
2018-07-30 16:18:56 +03:00
* Notice that it is not necessary to enable notifications in redis.conf for
* module notifications to work.
*
* Warning: the notification callbacks are performed in a synchronous manner,
* so notification callbacks must to be fast, or they would slow Redis down.
* If you need to take long actions, use threads to offload them.
*
* See https://redis.io/topics/notifications for more information.
*/
int RM_SubscribeToKeyspaceEvents(RedisModuleCtx *ctx, int types, RedisModuleNotificationFunc callback) {
RedisModuleKeyspaceSubscriber *sub = zmalloc(sizeof(*sub));
sub->module = ctx->module;
sub->event_mask = types;
sub->notify_callback = callback;
sub->active = 0;
listAddNodeTail(moduleKeyspaceSubscribers, sub);
return REDISMODULE_OK;
}
/* Dispatcher for keyspace notifications to module subscriber functions.
* This gets called only if at least one module requested to be notified on
* keyspace notifications */
void moduleNotifyKeyspaceEvent(int type, const char *event, robj *key, int dbid) {
/* Don't do anything if there aren't any subscribers */
if (listLength(moduleKeyspaceSubscribers) == 0) return;
listIter li;
listNode *ln;
listRewind(moduleKeyspaceSubscribers,&li);
/* Remove irrelevant flags from the type mask */
type &= ~(NOTIFY_KEYEVENT | NOTIFY_KEYSPACE);
while((ln = listNext(&li))) {
RedisModuleKeyspaceSubscriber *sub = ln->value;
/* Only notify subscribers on events matching they registration,
* and avoid subscribers triggering themselves */
if ((sub->event_mask & type) && sub->active == 0) {
RedisModuleCtx ctx = REDISMODULE_CTX_INIT;
ctx.module = sub->module;
ctx.client = moduleKeyspaceSubscribersClient;
selectDb(ctx.client, dbid);
2018-07-30 16:18:56 +03:00
/* mark the handler as active to avoid reentrant loops.
* If the subscriber performs an action triggering itself,
* it will not be notified about it. */
sub->active = 1;
sub->notify_callback(&ctx, type, event, key);
sub->active = 0;
moduleFreeContext(&ctx);
}
}
}
2018-07-01 13:24:50 +08:00
/* Unsubscribe any notification subscribers this module has upon unloading */
void moduleUnsubscribeNotifications(RedisModule *module) {
listIter li;
listNode *ln;
listRewind(moduleKeyspaceSubscribers,&li);
while((ln = listNext(&li))) {
RedisModuleKeyspaceSubscriber *sub = ln->value;
if (sub->module == module) {
listDelNode(moduleKeyspaceSubscribers, ln);
zfree(sub);
}
}
}
/* --------------------------------------------------------------------------
* Modules Cluster API
* -------------------------------------------------------------------------- */
/* The Cluster message callback function pointer type. */
typedef void (*RedisModuleClusterMessageReceiver)(RedisModuleCtx *ctx, const char *sender_id, uint8_t type, const unsigned char *payload, uint32_t len);
/* This structure identifies a registered caller: it must match a given module
* ID, for a given message type. The callback function is just the function
* that was registered as receiver. */
typedef struct moduleClusterReceiver {
uint64_t module_id;
RedisModuleClusterMessageReceiver callback;
struct RedisModule *module;
struct moduleClusterReceiver *next;
} moduleClusterReceiver;
typedef struct moduleClusterNodeInfo {
int flags;
char ip[NET_IP_STR_LEN];
int port;
char master_id[40]; /* Only if flags & REDISMODULE_NODE_MASTER is true. */
} mdouleClusterNodeInfo;
/* We have an array of message types: each bucket is a linked list of
* configured receivers. */
static moduleClusterReceiver *clusterReceivers[UINT8_MAX];
/* Dispatch the message to the right module receiver. */
void moduleCallClusterReceivers(const char *sender_id, uint64_t module_id, uint8_t type, const unsigned char *payload, uint32_t len) {
moduleClusterReceiver *r = clusterReceivers[type];
while(r) {
if (r->module_id == module_id) {
RedisModuleCtx ctx = REDISMODULE_CTX_INIT;
ctx.module = r->module;
r->callback(&ctx,sender_id,type,payload,len);
moduleFreeContext(&ctx);
return;
}
r = r->next;
}
}
/* Register a callback receiver for cluster messages of type 'type'. If there
* was already a registered callback, this will replace the callback function
* with the one provided, otherwise if the callback is set to NULL and there
* is already a callback for this function, the callback is unregistered
* (so this API call is also used in order to delete the receiver). */
void RM_RegisterClusterMessageReceiver(RedisModuleCtx *ctx, uint8_t type, RedisModuleClusterMessageReceiver callback) {
if (!server.cluster_enabled) return;
uint64_t module_id = moduleTypeEncodeId(ctx->module->name,0);
moduleClusterReceiver *r = clusterReceivers[type], *prev = NULL;
while(r) {
if (r->module_id == module_id) {
/* Found! Set or delete. */
if (callback) {
r->callback = callback;
} else {
/* Delete the receiver entry if the user is setting
* it to NULL. Just unlink the receiver node from the
* linked list. */
if (prev)
prev->next = r->next;
else
clusterReceivers[type]->next = r->next;
zfree(r);
}
return;
}
prev = r;
r = r->next;
}
/* Not found, let's add it. */
if (callback) {
r = zmalloc(sizeof(*r));
r->module_id = module_id;
r->module = ctx->module;
r->callback = callback;
r->next = clusterReceivers[type];
clusterReceivers[type] = r;
}
}
/* Send a message to all the nodes in the cluster if `target` is NULL, otherwise
* at the specified target, which is a REDISMODULE_NODE_ID_LEN bytes node ID, as
* returned by the receiver callback or by the nodes iteration functions.
*
* The function returns REDISMODULE_OK if the message was successfully sent,
* otherwise if the node is not connected or such node ID does not map to any
* known cluster node, REDISMODULE_ERR is returned. */
int RM_SendClusterMessage(RedisModuleCtx *ctx, char *target_id, uint8_t type, unsigned char *msg, uint32_t len) {
if (!server.cluster_enabled) return REDISMODULE_ERR;
uint64_t module_id = moduleTypeEncodeId(ctx->module->name,0);
if (clusterSendModuleMessageToTarget(target_id,module_id,type,msg,len) == C_OK)
return REDISMODULE_OK;
else
return REDISMODULE_ERR;
}
/* Return an array of string pointers, each string pointer points to a cluster
* node ID of exactly REDISMODULE_NODE_ID_SIZE bytes (without any null term).
* The number of returned node IDs is stored into `*numnodes`.
* However if this function is called by a module not running an a Redis
* instance with Redis Cluster enabled, NULL is returned instead.
*
* The IDs returned can be used with RedisModule_GetClusterNodeInfo() in order
* to get more information about single nodes.
*
* The array returned by this function must be freed using the function
* RedisModule_FreeClusterNodesList().
*
* Example:
*
* size_t count, j;
* char **ids = RedisModule_GetClusterNodesList(ctx,&count);
* for (j = 0; j < count; j++) {
* RedisModule_Log("notice","Node %.*s",
* REDISMODULE_NODE_ID_LEN,ids[j]);
* }
* RedisModule_FreeClusterNodesList(ids);
*/
char **RM_GetClusterNodesList(RedisModuleCtx *ctx, size_t *numnodes) {
UNUSED(ctx);
if (!server.cluster_enabled) return NULL;
size_t count = dictSize(server.cluster->nodes);
char **ids = zmalloc((count+1)*REDISMODULE_NODE_ID_LEN);
dictIterator *di = dictGetIterator(server.cluster->nodes);
dictEntry *de;
int j = 0;
while((de = dictNext(di)) != NULL) {
clusterNode *node = dictGetVal(de);
if (node->flags & (CLUSTER_NODE_NOADDR|CLUSTER_NODE_HANDSHAKE)) continue;
ids[j] = zmalloc(REDISMODULE_NODE_ID_LEN);
memcpy(ids[j],node->name,REDISMODULE_NODE_ID_LEN);
j++;
}
*numnodes = j;
ids[j] = NULL; /* Null term so that FreeClusterNodesList does not need
* to also get the count argument. */
dictReleaseIterator(di);
return ids;
}
/* Free the node list obtained with RedisModule_GetClusterNodesList. */
void RM_FreeClusterNodesList(char **ids) {
if (ids == NULL) return;
for (int j = 0; ids[j]; j++) zfree(ids[j]);
zfree(ids);
}
/* Return this node ID (REDISMODULE_CLUSTER_ID_LEN bytes) or NULL if the cluster
* is disabled. */
const char *RM_GetMyClusterID(void) {
if (!server.cluster_enabled) return NULL;
return server.cluster->myself->name;
}
/* Return the number of nodes in the cluster, regardless of their state
* (handshake, noaddress, ...) so that the number of active nodes may actually
* be smaller, but not greater than this number. If the instance is not in
* cluster mode, zero is returned. */
size_t RM_GetClusterSize(void) {
if (!server.cluster_enabled) return 0;
return dictSize(server.cluster->nodes);
}
/* Populate the specified info for the node having as ID the specified 'id',
* then returns REDISMODULE_OK. Otherwise if the node ID does not exist from
* the POV of this local node, REDISMODULE_ERR is returned.
*
* The arguments ip, master_id, port and flags can be NULL in case we don't
* need to populate back certain info. If an ip and master_id (only populated
* if the instance is a slave) are specified, they point to buffers holding
* at least REDISMODULE_NODE_ID_LEN bytes. The strings written back as ip
* and master_id are not null terminated.
*
* The list of flags reported is the following:
*
* * REDISMODULE_NODE_MYSELF This node
* * REDISMODULE_NODE_MASTER The node is a master
* * REDISMODULE_NODE_SLAVE The ndoe is a slave
* * REDISMODULE_NODE_PFAIL We see the node as failing
* * REDISMODULE_NODE_FAIL The cluster agrees the node is failing
* * REDISMODULE_NODE_NOFAILOVER The slave is configured to never failover
*/
clusterNode *clusterLookupNode(const char *name); /* We need access to internals */
int RM_GetClusterNodeInfo(RedisModuleCtx *ctx, const char *id, char *ip, char *master_id, int *port, int *flags) {
UNUSED(ctx);
clusterNode *node = clusterLookupNode(id);
if (node->flags & (CLUSTER_NODE_NOADDR|CLUSTER_NODE_HANDSHAKE))
return REDISMODULE_ERR;
if (ip) memcpy(ip,node->name,REDISMODULE_NODE_ID_LEN);
if (master_id) {
/* If the information is not available, the function will set the
* field to zero bytes, so that when the field can't be populated the
* function kinda remains predictable. */
if (node->flags & CLUSTER_NODE_MASTER && node->slaveof)
memcpy(master_id,node->slaveof->name,REDISMODULE_NODE_ID_LEN);
else
memset(master_id,0,REDISMODULE_NODE_ID_LEN);
}
if (port) *port = node->port;
/* As usually we have to remap flags for modules, in order to ensure
* we can provide binary compatibility. */
if (flags) {
*flags = 0;
if (node->flags & CLUSTER_NODE_MYSELF) *flags |= REDISMODULE_NODE_MYSELF;
if (node->flags & CLUSTER_NODE_MASTER) *flags |= REDISMODULE_NODE_MASTER;
if (node->flags & CLUSTER_NODE_SLAVE) *flags |= REDISMODULE_NODE_SLAVE;
if (node->flags & CLUSTER_NODE_PFAIL) *flags |= REDISMODULE_NODE_PFAIL;
if (node->flags & CLUSTER_NODE_FAIL) *flags |= REDISMODULE_NODE_FAIL;
if (node->flags & CLUSTER_NODE_NOFAILOVER) *flags |= REDISMODULE_NODE_NOFAILOVER;
}
return REDISMODULE_OK;
}
/* --------------------------------------------------------------------------
* Modules Timers API
*
* Module timers are an high precision "green timers" abstraction where
* every module can register even millions of timers without problems, even if
* the actual event loop will just have a single timer that is used to awake the
* module timers subsystem in order to process the next event.
*
* All the timers are stored into a radix tree, ordered by expire time, when
* the main Redis event loop timer callback is called, we try to process all
* the timers already expired one after the other. Then we re-enter the event
* loop registering a timer that will expire when the next to process module
* timer will expire.
*
* Every time the list of active timers drops to zero, we unregister the
* main event loop timer, so that there is no overhead when such feature is
* not used.
* -------------------------------------------------------------------------- */
static rax *Timers; /* The radix tree of all the timers sorted by expire. */
long long aeTimer = -1; /* Main event loop (ae.c) timer identifier. */
typedef void (*RedisModuleTimerProc)(RedisModuleCtx *ctx, void *data);
/* The timer descriptor, stored as value in the radix tree. */
typedef struct RedisModuleTimer {
RedisModule *module; /* Module reference. */
RedisModuleTimerProc callback; /* The callback to invoke on expire. */
void *data; /* Private data for the callback. */
} RedisModuleTimer;
/* This is the timer handler that is called by the main event loop. We schedule
* this timer to be called when the nearest of our module timers will expire. */
int moduleTimerHandler(struct aeEventLoop *eventLoop, long long id, void *clientData) {
UNUSED(eventLoop);
UNUSED(id);
UNUSED(clientData);
/* To start let's try to fire all the timers already expired. */
raxIterator ri;
raxStart(&ri,Timers);
uint64_t now = ustime();
long long next_period = 0;
while(1) {
raxSeek(&ri,"^",NULL,0);
if (!raxNext(&ri)) break;
uint64_t expiretime;
memcpy(&expiretime,ri.key,sizeof(expiretime));
expiretime = ntohu64(expiretime);
if (now >= expiretime) {
RedisModuleTimer *timer = ri.data;
RedisModuleCtx ctx = REDISMODULE_CTX_INIT;
ctx.module = timer->module;
timer->callback(&ctx,timer->data);
moduleFreeContext(&ctx);
raxRemove(Timers,(unsigned char*)ri.key,ri.key_len,NULL);
zfree(timer);
} else {
next_period = (expiretime-now)/1000; /* Scale to milliseconds. */
break;
}
}
raxStop(&ri);
/* Reschedule the next timer or cancel it. */
if (next_period <= 0) next_period = 1;
return (raxSize(Timers) > 0) ? next_period : AE_NOMORE;
}
/* Create a new timer that will fire after `period` milliseconds, and will call
* the specified function using `data` as argument. The returned timer ID can be
* used to get information from the timer or to stop it before it fires. */
RedisModuleTimerID RM_CreateTimer(RedisModuleCtx *ctx, mstime_t period, RedisModuleTimerProc callback, void *data) {
RedisModuleTimer *timer = zmalloc(sizeof(*timer));
timer->module = ctx->module;
timer->callback = callback;
timer->data = data;
uint64_t expiretime = ustime()+period*1000;
uint64_t key;
while(1) {
key = htonu64(expiretime);
if (raxFind(Timers, (unsigned char*)&key,sizeof(key)) == raxNotFound) {
raxInsert(Timers,(unsigned char*)&key,sizeof(key),timer,NULL);
break;
} else {
expiretime++;
}
}
/* We need to install the main event loop timer if it's not already
* installed, or we may need to refresh its period if we just installed
* a timer that will expire sooner than any other else. */
if (aeTimer != -1) {
raxIterator ri;
raxStart(&ri,Timers);
raxSeek(&ri,"^",NULL,0);
raxNext(&ri);
if (memcmp(ri.key,&key,sizeof(key)) == 0) {
/* This is the first key, we need to re-install the timer according
* to the just added event. */
aeDeleteTimeEvent(server.el,aeTimer);
aeTimer = -1;
}
raxStop(&ri);
}
/* If we have no main timer (the old one was invalidated, or this is the
* first module timer we have), install one. */
if (aeTimer == -1)
aeTimer = aeCreateTimeEvent(server.el,period,moduleTimerHandler,NULL,NULL);
return key;
}
/* Stop a timer, returns REDISMODULE_OK if the timer was found, belonged to the
* calling module, and was stoped, otherwise REDISMODULE_ERR is returned.
* If not NULL, the data pointer is set to the value of the data argument when
* the timer was created. */
int RM_StopTimer(RedisModuleCtx *ctx, RedisModuleTimerID id, void **data) {
RedisModuleTimer *timer = raxFind(Timers,(unsigned char*)&id,sizeof(id));
if (timer == raxNotFound || timer->module != ctx->module)
return REDISMODULE_ERR;
if (data) *data = timer->data;
raxRemove(Timers,(unsigned char*)&id,sizeof(id),NULL);
zfree(timer);
return REDISMODULE_OK;
}
/* Obtain information about a timer: its remaining time before firing
* (in milliseconds), and the private data pointer associated with the timer.
* If the timer specified does not exist or belongs to a different module
* no information is returned and the function returns REDISMODULE_ERR, otherwise
* REDISMODULE_OK is returned. The argumnets remaining or data can be NULL if
* the caller does not need certain information. */
int RM_GetTimerInfo(RedisModuleCtx *ctx, RedisModuleTimerID id, uint64_t *remaining, void **data) {
RedisModuleTimer *timer = raxFind(Timers,(unsigned char*)&id,sizeof(id));
if (timer == raxNotFound || timer->module != ctx->module)
return REDISMODULE_ERR;
if (remaining) {
int64_t rem = ntohu64(id)-ustime();
if (rem < 0) rem = 0;
*remaining = rem/1000; /* Scale to milliseconds. */
}
if (data) *data = timer->data;
return REDISMODULE_OK;
}
/* --------------------------------------------------------------------------
* Modules utility APIs
* -------------------------------------------------------------------------- */
/* Return random bytes using SHA1 in counter mode with a /dev/urandom
* initialized seed. This function is fast so can be used to generate
* many bytes without any effect on the operating system entropy pool.
* Currently this function is not thread safe. */
void RM_GetRandomBytes(unsigned char *dst, size_t len) {
getRandomBytes(dst,len);
}
/* Like RedisModule_GetRandomBytes() but instead of setting the string to
* random bytes the string is set to random characters in the in the
* hex charset [0-9a-f]. */
void RM_GetRandomHexChars(char *dst, size_t len) {
getRandomHexChars(dst,len);
}
2016-03-06 13:44:24 +01:00
/* --------------------------------------------------------------------------
* Modules API internals
* -------------------------------------------------------------------------- */
/* server.moduleapi dictionary type. Only uses plain C strings since
* this gets queries from modules. */
Use SipHash hash function to mitigate HashDos attempts. This change attempts to switch to an hash function which mitigates the effects of the HashDoS attack (denial of service attack trying to force data structures to worst case behavior) while at the same time providing Redis with an hash function that does not expect the input data to be word aligned, a condition no longer true now that sds.c strings have a varialbe length header. Note that it is possible sometimes that even using an hash function for which collisions cannot be generated without knowing the seed, special implementation details or the exposure of the seed in an indirect way (for example the ability to add elements to a Set and check the return in which Redis returns them with SMEMBERS) may make the attacker's life simpler in the process of trying to guess the correct seed, however the next step would be to switch to a log(N) data structure when too many items in a single bucket are detected: this seems like an overkill in the case of Redis. SPEED REGRESION TESTS: In order to verify that switching from MurmurHash to SipHash had no impact on speed, a set of benchmarks involving fast insertion of 5 million of keys were performed. The result shows Redis with SipHash in high pipelining conditions to be about 4% slower compared to using the previous hash function. However this could partially be related to the fact that the current implementation does not attempt to hash whole words at a time but reads single bytes, in order to have an output which is endian-netural and at the same time working on systems where unaligned memory accesses are a problem. Further X86 specific optimizations should be tested, the function may easily get at the same level of MurMurHash2 if a few optimizations are performed.
2017-02-20 16:09:54 +01:00
uint64_t dictCStringKeyHash(const void *key) {
2016-03-06 13:44:24 +01:00
return dictGenHashFunction((unsigned char*)key, strlen((char*)key));
}
int dictCStringKeyCompare(void *privdata, const void *key1, const void *key2) {
UNUSED(privdata);
2016-03-06 13:44:24 +01:00
return strcmp(key1,key2) == 0;
}
dictType moduleAPIDictType = {
dictCStringKeyHash, /* hash function */
NULL, /* key dup */
NULL, /* val dup */
dictCStringKeyCompare, /* key compare */
NULL, /* key destructor */
NULL /* val destructor */
};
int moduleRegisterApi(const char *funcname, void *funcptr) {
return dictAdd(server.moduleapi, (char*)funcname, funcptr);
}
#define REGISTER_API(name) \
moduleRegisterApi("RedisModule_" #name, (void *)(unsigned long)RM_ ## name)
2016-03-06 13:44:24 +01:00
/* Global initialization at Redis startup. */
void moduleRegisterCoreAPI(void);
2016-03-06 13:44:24 +01:00
void moduleInitModulesSystem(void) {
moduleUnblockedClients = listCreate();
2016-03-06 13:44:24 +01:00
server.loadmodule_queue = listCreate();
modules = dictCreate(&modulesDictType,NULL);
/* Set up the keyspace notification susbscriber list and static client */
moduleKeyspaceSubscribers = listCreate();
moduleKeyspaceSubscribersClient = createClient(-1);
moduleKeyspaceSubscribersClient->flags |= CLIENT_MODULE;
2016-03-06 13:44:24 +01:00
moduleRegisterCoreAPI();
if (pipe(server.module_blocked_pipe) == -1) {
serverLog(LL_WARNING,
"Can't create the pipe for module blocking commands: %s",
strerror(errno));
exit(1);
}
/* Make the pipe non blocking. This is just a best effort aware mechanism
* and we do not want to block not in the read nor in the write half. */
anetNonBlock(NULL,server.module_blocked_pipe[0]);
anetNonBlock(NULL,server.module_blocked_pipe[1]);
/* Create the timers radix tree. */
Timers = raxNew();
/* Our thread-safe contexts GIL must start with already locked:
* it is just unlocked when it's safe. */
pthread_mutex_lock(&moduleGIL);
2016-03-06 13:44:24 +01:00
}
/* Load all the modules in the server.loadmodule_queue list, which is
* populated by `loadmodule` directives in the configuration file.
* We can't load modules directly when processing the configuration file
* because the server must be fully initialized before loading modules.
*
* The function aborts the server on errors, since to start with missing
2018-07-01 13:24:50 +08:00
* modules is not considered sane: clients may rely on the existence of
2016-03-06 13:44:24 +01:00
* given commands, loading AOF also may need some modules to exist, and
* if this instance is a slave, it must understand commands from master. */
void moduleLoadFromQueue(void) {
listIter li;
listNode *ln;
listRewind(server.loadmodule_queue,&li);
while((ln = listNext(&li))) {
struct moduleLoadQueueEntry *loadmod = ln->value;
if (moduleLoad(loadmod->path,(void **)loadmod->argv,loadmod->argc)
== C_ERR)
{
2016-03-06 13:44:24 +01:00
serverLog(LL_WARNING,
"Can't load module from %s: server aborting",
loadmod->path);
2016-03-06 13:44:24 +01:00
exit(1);
}
}
}
void moduleFreeModuleStructure(struct RedisModule *module) {
listRelease(module->types);
2016-03-06 13:44:24 +01:00
sdsfree(module->name);
zfree(module);
}
void moduleUnregisterCommands(struct RedisModule *module) {
/* Unregister all the commands registered by this module. */
dictIterator *di = dictGetSafeIterator(server.commands);
dictEntry *de;
while ((de = dictNext(di)) != NULL) {
struct redisCommand *cmd = dictGetVal(de);
if (cmd->proc == RedisModuleCommandDispatcher) {
RedisModuleCommandProxy *cp =
(void*)(unsigned long)cmd->getkeys_proc;
sds cmdname = cp->rediscmd->name;
if (cp->module == module) {
dictDelete(server.commands,cmdname);
dictDelete(server.orig_commands,cmdname);
sdsfree(cmdname);
zfree(cp->rediscmd);
zfree(cp);
}
}
}
dictReleaseIterator(di);
}
2016-03-06 13:44:24 +01:00
/* Load a module and initialize it. On success C_OK is returned, otherwise
* C_ERR is returned. */
int moduleLoad(const char *path, void **module_argv, int module_argc) {
int (*onload)(void *, void **, int);
2016-03-06 13:44:24 +01:00
void *handle;
RedisModuleCtx ctx = REDISMODULE_CTX_INIT;
handle = dlopen(path,RTLD_NOW|RTLD_LOCAL);
2016-03-31 21:18:45 +03:00
if (handle == NULL) {
serverLog(LL_WARNING, "Module %s failed to load: %s", path, dlerror());
return C_ERR;
}
onload = (int (*)(void *, void **, int))(unsigned long) dlsym(handle,"RedisModule_OnLoad");
2016-03-06 13:44:24 +01:00
if (onload == NULL) {
2017-02-22 14:26:21 +09:00
dlclose(handle);
2016-03-06 13:44:24 +01:00
serverLog(LL_WARNING,
"Module %s does not export RedisModule_OnLoad() "
"symbol. Module not loaded.",path);
return C_ERR;
}
if (onload((void*)&ctx,module_argv,module_argc) == REDISMODULE_ERR) {
if (ctx.module) {
moduleUnregisterCommands(ctx.module);
moduleFreeModuleStructure(ctx.module);
}
2016-03-06 13:44:24 +01:00
dlclose(handle);
serverLog(LL_WARNING,
"Module %s initialization failed. Module not loaded",path);
return C_ERR;
}
/* Redis module loaded! Register it. */
dictAdd(modules,ctx.module->name,ctx.module);
ctx.module->handle = handle;
serverLog(LL_NOTICE,"Module '%s' loaded from %s",ctx.module->name,path);
moduleFreeContext(&ctx);
2016-03-06 13:44:24 +01:00
return C_OK;
}
2016-03-06 13:44:24 +01:00
/* Unload the module registered with the specified name. On success
* C_OK is returned, otherwise C_ERR is returned and errno is set
* to the following values depending on the type of error:
*
* * ENONET: No such module having the specified name.
* * EBUSY: The module exports a new data type and can only be reloaded. */
2016-03-06 13:44:24 +01:00
int moduleUnload(sds name) {
struct RedisModule *module = dictFetchValue(modules,name);
if (module == NULL) {
errno = ENOENT;
return REDISMODULE_ERR;
}
if (listLength(module->types)) {
errno = EBUSY;
2016-03-06 13:44:24 +01:00
return REDISMODULE_ERR;
}
moduleUnregisterCommands(module);
2016-03-06 13:44:24 +01:00
/* Remvoe any noification subscribers this module might have */
moduleUnsubscribeNotifications(module);
2016-03-06 13:44:24 +01:00
/* Unregister all the hooks. TODO: Yet no hooks support here. */
/* Unload the dynamic library. */
if (dlclose(module->handle) == -1) {
char *error = dlerror();
if (error == NULL) error = "Unknown error";
serverLog(LL_WARNING,"Error when trying to close the %s module: %s",
module->name, error);
}
/* Remove from list of modules. */
serverLog(LL_NOTICE,"Module %s unloaded",module->name);
dictDelete(modules,module->name);
module->name = NULL; /* The name was already freed by dictDelete(). */
moduleFreeModuleStructure(module);
2016-03-06 13:44:24 +01:00
return REDISMODULE_OK;
}
/* Redis MODULE command.
*
* MODULE LOAD <path> [args...] */
2016-03-06 13:44:24 +01:00
void moduleCommand(client *c) {
char *subcmd = c->argv[1]->ptr;
if (c->argc == 2 && !strcasecmp(subcmd,"help")) {
const char *help[] = {
2018-06-09 20:54:05 +03:00
"LIST -- Return a list of loaded modules.",
"LOAD <path> [arg ...] -- Load a module library from <path>.",
"UNLOAD <name> -- Unload a module.",
NULL
};
addReplyHelp(c, help);
} else
if (!strcasecmp(subcmd,"load") && c->argc >= 3) {
2016-06-05 13:18:24 +03:00
robj **argv = NULL;
int argc = 0;
if (c->argc > 3) {
argc = c->argc - 3;
2016-06-05 13:18:24 +03:00
argv = &c->argv[3];
}
if (moduleLoad(c->argv[2]->ptr,(void **)argv,argc) == C_OK)
2016-03-06 13:44:24 +01:00
addReply(c,shared.ok);
else
addReplyError(c,
"Error loading the extension. Please check the server logs.");
} else if (!strcasecmp(subcmd,"unload") && c->argc == 3) {
if (moduleUnload(c->argv[2]->ptr) == C_OK)
addReply(c,shared.ok);
else {
char *errmsg;
2016-03-06 13:44:24 +01:00
switch(errno) {
case ENOENT:
errmsg = "no such module with that name";
break;
case EBUSY:
errmsg = "the module exports one or more module-side data types, can't unload";
break;
default:
errmsg = "operation not possible.";
break;
2016-03-06 13:44:24 +01:00
}
addReplyErrorFormat(c,"Error unloading module: %s",errmsg);
}
} else if (!strcasecmp(subcmd,"list") && c->argc == 2) {
dictIterator *di = dictGetIterator(modules);
dictEntry *de;
addReplyMultiBulkLen(c,dictSize(modules));
while ((de = dictNext(di)) != NULL) {
sds name = dictGetKey(de);
struct RedisModule *module = dictGetVal(de);
addReplyMultiBulkLen(c,4);
addReplyBulkCString(c,"name");
addReplyBulkCBuffer(c,name,sdslen(name));
addReplyBulkCString(c,"ver");
addReplyLongLong(c,module->ver);
}
dictReleaseIterator(di);
} else {
addReplySubcommandSyntaxError(c);
return;
2016-03-06 13:44:24 +01:00
}
}
/* Return the number of registered modules. */
size_t moduleCount(void) {
return dictSize(modules);
}
/* Register all the APIs we export. Keep this function at the end of the
* file so that's easy to seek it to add new entries. */
void moduleRegisterCoreAPI(void) {
server.moduleapi = dictCreate(&moduleAPIDictType,NULL);
REGISTER_API(Alloc);
REGISTER_API(Calloc);
REGISTER_API(Realloc);
REGISTER_API(Free);
REGISTER_API(Strdup);
REGISTER_API(CreateCommand);
REGISTER_API(SetModuleAttribs);
2017-09-28 17:38:40 +08:00
REGISTER_API(IsModuleNameBusy);
REGISTER_API(WrongArity);
REGISTER_API(ReplyWithLongLong);
REGISTER_API(ReplyWithError);
REGISTER_API(ReplyWithSimpleString);
REGISTER_API(ReplyWithArray);
REGISTER_API(ReplySetArrayLength);
REGISTER_API(ReplyWithString);
REGISTER_API(ReplyWithStringBuffer);
REGISTER_API(ReplyWithNull);
REGISTER_API(ReplyWithCallReply);
REGISTER_API(ReplyWithDouble);
REGISTER_API(GetSelectedDb);
REGISTER_API(SelectDb);
REGISTER_API(OpenKey);
REGISTER_API(CloseKey);
REGISTER_API(KeyType);
REGISTER_API(ValueLength);
REGISTER_API(ListPush);
REGISTER_API(ListPop);
REGISTER_API(StringToLongLong);
REGISTER_API(StringToDouble);
REGISTER_API(Call);
REGISTER_API(CallReplyProto);
REGISTER_API(FreeCallReply);
REGISTER_API(CallReplyInteger);
REGISTER_API(CallReplyType);
REGISTER_API(CallReplyLength);
REGISTER_API(CallReplyArrayElement);
REGISTER_API(CallReplyStringPtr);
REGISTER_API(CreateStringFromCallReply);
REGISTER_API(CreateString);
REGISTER_API(CreateStringFromLongLong);
REGISTER_API(CreateStringFromString);
2016-09-21 12:30:38 +03:00
REGISTER_API(CreateStringPrintf);
REGISTER_API(FreeString);
REGISTER_API(StringPtrLen);
REGISTER_API(AutoMemory);
REGISTER_API(Replicate);
REGISTER_API(ReplicateVerbatim);
REGISTER_API(DeleteKey);
REGISTER_API(UnlinkKey);
REGISTER_API(StringSet);
REGISTER_API(StringDMA);
REGISTER_API(StringTruncate);
REGISTER_API(SetExpire);
REGISTER_API(GetExpire);
REGISTER_API(ZsetAdd);
REGISTER_API(ZsetIncrby);
REGISTER_API(ZsetScore);
REGISTER_API(ZsetRem);
REGISTER_API(ZsetRangeStop);
REGISTER_API(ZsetFirstInScoreRange);
REGISTER_API(ZsetLastInScoreRange);
REGISTER_API(ZsetFirstInLexRange);
REGISTER_API(ZsetLastInLexRange);
REGISTER_API(ZsetRangeCurrentElement);
REGISTER_API(ZsetRangeNext);
REGISTER_API(ZsetRangePrev);
REGISTER_API(ZsetRangeEndReached);
REGISTER_API(HashSet);
REGISTER_API(HashGet);
REGISTER_API(IsKeysPositionRequest);
REGISTER_API(KeyAtPos);
REGISTER_API(GetClientId);
2017-09-27 11:56:40 +03:00
REGISTER_API(GetContextFlags);
REGISTER_API(PoolAlloc);
REGISTER_API(CreateDataType);
REGISTER_API(ModuleTypeSetValue);
REGISTER_API(ModuleTypeGetType);
REGISTER_API(ModuleTypeGetValue);
REGISTER_API(SaveUnsigned);
REGISTER_API(LoadUnsigned);
REGISTER_API(SaveSigned);
REGISTER_API(LoadSigned);
REGISTER_API(SaveString);
REGISTER_API(SaveStringBuffer);
REGISTER_API(LoadString);
REGISTER_API(LoadStringBuffer);
REGISTER_API(SaveDouble);
REGISTER_API(LoadDouble);
REGISTER_API(SaveFloat);
REGISTER_API(LoadFloat);
REGISTER_API(EmitAOF);
REGISTER_API(Log);
REGISTER_API(LogIOError);
REGISTER_API(StringAppendBuffer);
REGISTER_API(RetainString);
REGISTER_API(StringCompare);
REGISTER_API(GetContextFromIO);
REGISTER_API(BlockClient);
REGISTER_API(UnblockClient);
REGISTER_API(IsBlockedReplyRequest);
REGISTER_API(IsBlockedTimeoutRequest);
REGISTER_API(GetBlockedClientPrivateData);
2016-10-13 16:57:40 +02:00
REGISTER_API(AbortBlock);
2016-10-07 16:34:19 +02:00
REGISTER_API(Milliseconds);
REGISTER_API(GetThreadSafeContext);
REGISTER_API(FreeThreadSafeContext);
REGISTER_API(ThreadSafeContextLock);
REGISTER_API(ThreadSafeContextUnlock);
2017-07-06 10:29:19 +02:00
REGISTER_API(DigestAddStringBuffer);
REGISTER_API(DigestAddLongLong);
REGISTER_API(DigestEndSequence);
REGISTER_API(SubscribeToKeyspaceEvents);
REGISTER_API(RegisterClusterMessageReceiver);
REGISTER_API(SendClusterMessage);
REGISTER_API(GetClusterNodeInfo);
REGISTER_API(GetClusterNodesList);
REGISTER_API(FreeClusterNodesList);
REGISTER_API(CreateTimer);
REGISTER_API(StopTimer);
REGISTER_API(GetTimerInfo);
REGISTER_API(GetMyClusterID);
REGISTER_API(GetClusterSize);
REGISTER_API(GetRandomBytes);
REGISTER_API(GetRandomHexChars);
REGISTER_API(BlockedClientDisconnected);
REGISTER_API(SetDisconnectCallback);
REGISTER_API(GetBlockedClientHandle);
}