redict/tests/unit/scripting.tcl

434 lines
14 KiB
Tcl
Raw Normal View History

2011-05-24 18:40:37 +02:00
start_server {tags {"scripting"}} {
test {EVAL - Does Lua interpreter replies to our requests?} {
r eval {return 'hello'} 0
} {hello}
test {EVAL - Lua integer -> Redis protocol type conversion} {
r eval {return 100.5} 0
} {100}
test {EVAL - Lua string -> Redis protocol type conversion} {
r eval {return 'hello world'} 0
} {hello world}
test {EVAL - Lua true boolean -> Redis protocol type conversion} {
r eval {return true} 0
} {1}
test {EVAL - Lua false boolean -> Redis protocol type conversion} {
r eval {return false} 0
} {}
test {EVAL - Lua status code reply -> Redis protocol type conversion} {
r eval {return {ok='fine'}} 0
} {fine}
test {EVAL - Lua error reply -> Redis protocol type conversion} {
catch {
r eval {return {err='this is an error'}} 0
} e
set _ $e
} {this is an error}
test {EVAL - Lua table -> Redis protocol type conversion} {
r eval {return {1,2,3,'ciao',{1,2}}} 0
} {1 2 3 ciao {1 2}}
2013-01-17 01:00:20 +08:00
test {EVAL - Are the KEYS and ARGV arrays populated correctly?} {
2011-05-24 18:40:37 +02:00
r eval {return {KEYS[1],KEYS[2],ARGV[1],ARGV[2]}} 2 a b c d
} {a b c d}
test {EVAL - is Lua able to call Redis API?} {
r set mykey myval
r eval {return redis.call('get','mykey')} 0
} {myval}
test {EVALSHA - Can we call a SHA1 if already defined?} {
r evalsha 9bd632c7d33e571e9f24556ebed26c3479a87129 0
} {myval}
test {EVALSHA - Can we call a SHA1 in uppercase?} {
r evalsha 9BD632C7D33E571E9F24556EBED26C3479A87129 0
} {myval}
test {EVALSHA - Do we get an error on invalid SHA1?} {
catch {r evalsha NotValidShaSUM 0} e
set _ $e
} {NOSCRIPT*}
2011-05-24 18:40:37 +02:00
test {EVALSHA - Do we get an error on non defined SHA1?} {
catch {r evalsha ffd632c7d33e571e9f24556ebed26c3479a87130 0} e
2011-05-24 18:40:37 +02:00
set _ $e
} {NOSCRIPT*}
test {EVAL - Redis integer -> Lua type conversion} {
r eval {
local foo = redis.pcall('incr','x')
2011-05-24 18:40:37 +02:00
return {type(foo),foo}
} 0
} {number 1}
test {EVAL - Redis bulk -> Lua type conversion} {
r set mykey myval
r eval {
local foo = redis.pcall('get','mykey')
2011-05-24 18:40:37 +02:00
return {type(foo),foo}
} 0
} {string myval}
test {EVAL - Redis multi bulk -> Lua type conversion} {
r del mylist
r rpush mylist a
r rpush mylist b
r rpush mylist c
r eval {
local foo = redis.pcall('lrange','mylist',0,-1)
2011-05-24 18:40:37 +02:00
return {type(foo),foo[1],foo[2],foo[3],# foo}
} 0
} {table a b c 3}
test {EVAL - Redis status reply -> Lua type conversion} {
r eval {
local foo = redis.pcall('set','mykey','myval')
2011-05-24 18:40:37 +02:00
return {type(foo),foo['ok']}
} 0
} {table OK}
test {EVAL - Redis error reply -> Lua type conversion} {
r set mykey myval
r eval {
local foo = redis.pcall('incr','mykey')
2011-05-24 18:40:37 +02:00
return {type(foo),foo['err']}
} 0
} {table {ERR value is not an integer or out of range}}
test {EVAL - Redis nil bulk reply -> Lua type conversion} {
r del mykey
r eval {
local foo = redis.pcall('get','mykey')
2011-05-24 18:40:37 +02:00
return {type(foo),foo == false}
} 0
} {boolean 1}
test {EVAL - Is Lua affecting the currently selected DB?} {
r set mykey "this is DB 9"
r select 10
r set mykey "this is DB 10"
r eval {return redis.pcall('get','mykey')} 0
2011-05-24 18:40:37 +02:00
} {this is DB 10}
test {EVAL - Is Lua seleced DB retained?} {
r eval {return redis.pcall('select','9')} 0
2011-05-24 18:40:37 +02:00
r get mykey
} {this is DB 9}
if 0 {
test {EVAL - Script can't run more than configured time limit} {
r config set lua-time-limit 1
catch {
r eval {
local i = 0
while true do i=i+1 end
} 0
} e
set _ $e
} {*execution time*}
}
test {EVAL - Scripts can't run certain commands} {
set e {}
catch {r eval {return redis.pcall('spop','x')} 0} e
set e
} {*not allowed*}
test {EVAL - Scripts can't run certain commands} {
set e {}
catch {
r eval "redis.pcall('randomkey'); return redis.pcall('set','x','ciao')" 0
} e
set e
} {*not allowed after*}
test {EVAL - No arguments to redis.call/pcall is considered an error} {
set e {}
catch {r eval {return redis.call()} 0} e
set e
} {*one argument*}
test {EVAL - redis.call variant raises a Lua error on Redis cmd error (1)} {
set e {}
catch {
r eval "redis.call('nosuchcommand')" 0
} e
set e
} {*Unknown Redis*}
test {EVAL - redis.call variant raises a Lua error on Redis cmd error (1)} {
set e {}
catch {
r eval "redis.call('get','a','b','c')" 0
} e
set e
} {*number of args*}
test {EVAL - redis.call variant raises a Lua error on Redis cmd error (1)} {
set e {}
r set foo bar
catch {
r eval "redis.call('lpush','foo','val')" 0
} e
set e
} {*against a key*}
test {SCRIPTING FLUSH - is able to clear the scripts cache?} {
r set mykey myval
set v [r evalsha 9bd632c7d33e571e9f24556ebed26c3479a87129 0]
assert_equal $v myval
set e ""
r script flush
catch {r evalsha 9bd632c7d33e571e9f24556ebed26c3479a87129 0} e
set e
} {NOSCRIPT*}
test {SCRIPT EXISTS - can detect already defined scripts?} {
r eval "return 1+1" 0
r script exists a27e7e8a43702b7046d4f6a7ccf5b60cef6b9bd9 a27e7e8a43702b7046d4f6a7ccf5b60cef6b9bda
} {1 0}
test {SCRIPT LOAD - is able to register scripts in the scripting cache} {
list \
[r script load "return 'loaded'"] \
[r evalsha b534286061d4b9e4026607613b95c06c06015ae8 0]
} {b534286061d4b9e4026607613b95c06c06015ae8 loaded}
test "In the context of Lua the output of random commands gets ordered" {
r del myset
r sadd myset a b c d e f g h i l m n o p q r s t u v z aa aaa azz
r eval {return redis.call('smembers','myset')} 0
} {a aa aaa azz b c d e f g h i l m n o p q r s t u v z}
test "SORT is normally not alpha re-ordered for the scripting engine" {
r del myset
r sadd myset 1 2 3 4 10
r eval {return redis.call('sort','myset','desc')} 0
} {10 4 3 2 1}
test "SORT BY <constant> output gets ordered for scripting" {
r del myset
r sadd myset a b c d e f g h i l m n o p q r s t u v z aa aaa azz
r eval {return redis.call('sort','myset','by','_')} 0
} {a aa aaa azz b c d e f g h i l m n o p q r s t u v z}
test "SORT BY <constant> with GET gets ordered for scripting" {
r del myset
r sadd myset a b c
r eval {return redis.call('sort','myset','by','_','get','#','get','_:*')} 0
} {a {} b {} c {}}
2012-03-28 20:47:50 +02:00
test "redis.sha1hex() implementation" {
list [r eval {return redis.sha1hex('')} 0] \
[r eval {return redis.sha1hex('Pizza & Mandolino')} 0]
} {da39a3ee5e6b4b0d3255bfef95601890afd80709 74822d82031af7493c20eefa13bd07ec4fada82f}
2012-04-13 11:48:45 +02:00
test {Globals protection reading an undeclared global variable} {
catch {r eval {return a} 0} e
set e
} {*ERR*attempted to access unexisting global*}
2012-04-13 11:48:45 +02:00
test {Globals protection setting an undeclared global*} {
2012-04-13 11:48:45 +02:00
catch {r eval {a=10} 0} e
set e
} {*ERR*attempted to create global*}
test {Test an example script DECR_IF_GT} {
set decr_if_gt {
local current
current = redis.call('get',KEYS[1])
if not current then return nil end
if current > ARGV[1] then
return redis.call('decr',KEYS[1])
else
return redis.call('get',KEYS[1])
end
}
r set foo 5
set res {}
lappend res [r eval $decr_if_gt 1 foo 2]
lappend res [r eval $decr_if_gt 1 foo 2]
lappend res [r eval $decr_if_gt 1 foo 2]
lappend res [r eval $decr_if_gt 1 foo 2]
lappend res [r eval $decr_if_gt 1 foo 2]
set res
} {4 3 2 2 2}
2012-04-18 23:50:16 +02:00
test {Scripting engine resets PRNG at every script execution} {
set rand1 [r eval {return tostring(math.random())} 0]
set rand2 [r eval {return tostring(math.random())} 0]
assert_equal $rand1 $rand2
}
test {Scripting engine PRNG can be seeded correctly} {
set rand1 [r eval {
math.randomseed(ARGV[1]); return tostring(math.random())
} 0 10]
set rand2 [r eval {
math.randomseed(ARGV[1]); return tostring(math.random())
} 0 10]
set rand3 [r eval {
math.randomseed(ARGV[1]); return tostring(math.random())
} 0 20]
assert_equal $rand1 $rand2
assert {$rand2 ne $rand3}
}
2013-06-19 18:53:07 +02:00
test {EVAL does not leak in the Lua stack} {
r set x 0
# Use a non blocking client to speedup the loop.
set rd [redis_deferring_client]
for {set j 0} {$j < 10000} {incr j} {
$rd eval {return redis.call("incr",KEYS[1])} 1 x
}
for {set j 0} {$j < 10000} {incr j} {
$rd read
}
assert {[s used_memory_lua] < 1024*100}
$rd close
r get x
} {10000}
2013-06-19 18:53:07 +02:00
test {EVAL processes writes from AOF in read-only slaves} {
r flushall
r config set appendonly yes
r eval {redis.call("set","foo","100")} 0
r eval {redis.call("incr","foo")} 0
r eval {redis.call("incr","foo")} 0
wait_for_condition 50 100 {
[s aof_rewrite_in_progress] == 0
} else {
fail "AOF rewrite can't complete after CONFIG SET appendonly yes."
}
r config set slave-read-only yes
r slaveof 127.0.0.1 0
r debug loadaof
r get foo
} {102}
2011-05-24 18:40:37 +02:00
}
# Start a new server since the last test in this stanza will kill the
# instance at all.
start_server {tags {"scripting"}} {
test {Timedout read-only scripts can be killed by SCRIPT KILL} {
set rd [redis_deferring_client]
r config set lua-time-limit 10
$rd eval {while true do end} 0
after 200
catch {r ping} e
assert_match {BUSY*} $e
r script kill
assert_equal [r ping] "PONG"
}
2013-01-10 11:10:31 +01:00
test {Timedout script link is still usable after Lua returns} {
r config set lua-time-limit 10
r eval {for i=1,100000 do redis.call('ping') end return 'ok'} 0
r ping
} {PONG}
test {Timedout scripts that modified data can't be killed by SCRIPT KILL} {
set rd [redis_deferring_client]
r config set lua-time-limit 10
$rd eval {redis.call('set','x','y'); while true do end} 0
after 200
catch {r ping} e
assert_match {BUSY*} $e
catch {r script kill} e
assert_match {UNKILLABLE*} $e
catch {r ping} e
assert_match {BUSY*} $e
}
2013-01-10 11:10:31 +01:00
# Note: keep this test at the end of this server stanza because it
# kills the server.
test {SHUTDOWN NOSAVE can kill a timedout script anyway} {
# The server sould be still unresponding to normal commands.
catch {r ping} e
assert_match {BUSY*} $e
catch {r shutdown nosave}
# Make sure the server was killed
catch {set rd [redis_deferring_client]} e
assert_match {*connection refused*} $e
}
}
start_server {tags {"scripting repl"}} {
start_server {} {
2013-01-10 11:10:31 +01:00
test {Before the slave connects we issue two EVAL commands} {
# One with an error, but still executing a command.
# SHA is: 6e8bd6bdccbe78899e3cc06b31b6dbf4324c2e56
catch {
r eval {redis.call('incr','x'); redis.call('nonexisting')} 0
}
# One command is correct:
# SHA is: ae3477e27be955de7e1bc9adfdca626b478d3cb2
r eval {return redis.call('incr','x')} 0
2013-01-10 11:10:31 +01:00
} {2}
test {Connect a slave to the main instance} {
r -1 slaveof [srv 0 host] [srv 0 port]
wait_for_condition 50 100 {
[s -1 role] eq {slave} &&
[string match {*master_link_status:up*} [r -1 info replication]]
} else {
fail "Can't turn the instance into a slave"
}
}
2013-01-10 11:10:31 +01:00
test {Now use EVALSHA against the master, with both SHAs} {
# The server should replicate successful and unsuccessful
# commands as EVAL instead of EVALSHA.
catch {
r evalsha 6e8bd6bdccbe78899e3cc06b31b6dbf4324c2e56 0
}
r evalsha ae3477e27be955de7e1bc9adfdca626b478d3cb2 0
2013-01-10 11:10:31 +01:00
} {4}
2013-01-10 11:10:31 +01:00
test {If EVALSHA was replicated as EVAL, 'x' should be '4'} {
wait_for_condition 50 100 {
2013-01-10 11:10:31 +01:00
[r -1 get x] eq {4}
} else {
2013-01-10 11:10:31 +01:00
fail "Expected 4 in x, but value is '[r -1 get x]'"
}
}
A reimplementation of blocking operation internals. Redis provides support for blocking operations such as BLPOP or BRPOP. This operations are identical to normal LPOP and RPOP operations as long as there are elements in the target list, but if the list is empty they block waiting for new data to arrive to the list. All the clients blocked waiting for th same list are served in a FIFO way, so the first that blocked is the first to be served when there is more data pushed by another client into the list. The previous implementation of blocking operations was conceived to serve clients in the context of push operations. For for instance: 1) There is a client "A" blocked on list "foo". 2) The client "B" performs `LPUSH foo somevalue`. 3) The client "A" is served in the context of the "B" LPUSH, synchronously. Processing things in a synchronous way was useful as if "A" pushes a value that is served by "B", from the point of view of the database is a NOP (no operation) thing, that is, nothing is replicated, nothing is written in the AOF file, and so forth. However later we implemented two things: 1) Variadic LPUSH that could add multiple values to a list in the context of a single call. 2) BRPOPLPUSH that was a version of BRPOP that also provided a "PUSH" side effect when receiving data. This forced us to make the synchronous implementation more complex. If client "B" is waiting for data, and "A" pushes three elemnents in a single call, we needed to propagate an LPUSH with a missing argument in the AOF and replication link. We also needed to make sure to replicate the LPUSH side of BRPOPLPUSH, but only if in turn did not happened to serve another blocking client into another list ;) This were complex but with a few of mutually recursive functions everything worked as expected... until one day we introduced scripting in Redis. Scripting + synchronous blocking operations = Issue #614. Basically you can't "rewrite" a script to have just a partial effect on the replicas and AOF file if the script happened to serve a few blocked clients. The solution to all this problems, implemented by this commit, is to change the way we serve blocked clients. Instead of serving the blocked clients synchronously, in the context of the command performing the PUSH operation, it is now an asynchronous and iterative process: 1) If a key that has clients blocked waiting for data is the subject of a list push operation, We simply mark keys as "ready" and put it into a queue. 2) Every command pushing stuff on lists, as a variadic LPUSH, a script, or whatever it is, is replicated verbatim without any rewriting. 3) Every time a Redis command, a MULTI/EXEC block, or a script, completed its execution, we run the list of keys ready to serve blocked clients (as more data arrived), and process this list serving the blocked clients. 4) As a result of "3" maybe more keys are ready again for other clients (as a result of BRPOPLPUSH we may have push operations), so we iterate back to step "3" if it's needed. The new code has a much simpler semantics, and a simpler to understand implementation, with the disadvantage of not being able to "optmize out" a PUSH+BPOP as a No OP. This commit will be tested with care before the final merge, more tests will be added likely.
2012-09-04 10:37:49 +02:00
test {Replication of script multiple pushes to list with BLPOP} {
set rd [redis_deferring_client]
$rd brpop a 0
r eval {
redis.call("lpush","a","1");
redis.call("lpush","a","2");
} 0
set res [$rd read]
$rd close
wait_for_condition 50 100 {
[r -1 lrange a 0 -1] eq [r lrange a 0 -1]
} else {
fail "Expected list 'a' in slave and master to be the same, but they are respectively '[r -1 lrange a 0 -1]' and '[r lrange a 0 -1]'"
}
set res
} {a 1}
test {EVALSHA replication when first call is readonly} {
r del x
r eval {if tonumber(KEYS[1]) > 0 then redis.call('incr', 'x') end} 1 0
r evalsha 38fe3ddf5284a1d48f37f824b4c4e826879f3cb9 1 0
r evalsha 38fe3ddf5284a1d48f37f824b4c4e826879f3cb9 1 1
wait_for_condition 50 100 {
[r -1 get x] eq {1}
} else {
fail "Expected 1 in x, but value is '[r -1 get x]'"
}
}
}
}