redict/tests/unit/other.tcl

324 lines
9.2 KiB
Tcl
Raw Normal View History

2010-08-31 05:17:06 -04:00
start_server {tags {"other"}} {
2011-07-11 06:56:00 -04:00
if {$::force_failure} {
# This is used just for test suite development purposes.
test {Failing test} {
format err
} {ok}
}
test {SAVE - make sure there are all the types as values} {
# Wait for a background saving in progress to terminate
waitForBgsave r
r lpush mysavelist hello
r lpush mysavelist world
r set myemptykey {}
r set mynormalkey {blablablba}
r zadd mytestzset 10 a
r zadd mytestzset 20 b
r zadd mytestzset 30 c
r save
} {OK}
tags {slow} {
if {$::accurate} {set iterations 10000} else {set iterations 1000}
2010-06-02 18:16:10 -04:00
foreach fuzztype {binary alpha compr} {
test "FUZZ stresser with data model $fuzztype" {
set err 0
for {set i 0} {$i < $iterations} {incr i} {
2010-06-02 18:16:10 -04:00
set fuzz [randstring 0 512 $fuzztype]
r set foo $fuzz
set got [r get foo]
if {$got ne $fuzz} {
set err [list $fuzz $got]
break
}
}
2010-06-02 18:16:10 -04:00
set _ $err
} {0}
}
}
test {BGSAVE} {
waitForBgsave r
r flushdb
r save
r set x 10
r bgsave
waitForBgsave r
r debug reload
r get x
} {10}
test {SELECT an out of range DB} {
catch {r select 1000000} err
set _ $err
} {*index is out of range*}
tags {consistency} {
2010-07-27 08:42:11 -04:00
if {![catch {package require sha1}]} {
if {$::accurate} {set numops 10000} else {set numops 1000}
2010-07-27 08:42:11 -04:00
test {Check consistency of different data types after a reload} {
r flushdb
createComplexDataset r $numops
2010-07-27 08:42:11 -04:00
set dump [csvdump r]
set sha1 [r debug digest]
r debug reload
set sha1_after [r debug digest]
if {$sha1 eq $sha1_after} {
set _ 1
} else {
set newdump [csvdump r]
puts "Consistency test failed!"
puts "You can inspect the two dumps in /tmp/repldump*.txt"
2010-07-27 08:42:11 -04:00
set fd [open /tmp/repldump1.txt w]
puts $fd $dump
close $fd
set fd [open /tmp/repldump2.txt w]
puts $fd $newdump
close $fd
set _ 0
}
} {1}
test {Same dataset digest if saving/reloading as AOF?} {
r config set aof-use-rdb-preamble no
2010-07-27 08:42:11 -04:00
r bgrewriteaof
waitForBgrewriteaof r
r debug loadaof
set sha1_after [r debug digest]
if {$sha1 eq $sha1_after} {
set _ 1
} else {
set newdump [csvdump r]
puts "Consistency test failed!"
puts "You can inspect the two dumps in /tmp/aofdump*.txt"
set fd [open /tmp/aofdump1.txt w]
puts $fd $dump
close $fd
set fd [open /tmp/aofdump2.txt w]
puts $fd $newdump
close $fd
set _ 0
}
} {1}
}
}
test {EXPIRES after a reload (snapshot + append only file rewrite)} {
r flushdb
r set x 10
r expire x 1000
r save
r debug reload
set ttl [r ttl x]
set e1 [expr {$ttl > 900 && $ttl <= 1000}]
r bgrewriteaof
waitForBgrewriteaof r
r debug loadaof
set ttl [r ttl x]
set e2 [expr {$ttl > 900 && $ttl <= 1000}]
list $e1 $e2
} {1 1}
test {EXPIRES after AOF reload (without rewrite)} {
r flushdb
r config set appendonly yes
r config set aof-use-rdb-preamble no
r set x somevalue
r expire x 1000
r setex y 2000 somevalue
r set z somevalue
r expireat z [expr {[clock seconds]+3000}]
# Milliseconds variants
r set px somevalue
r pexpire px 1000000
r psetex py 2000000 somevalue
r set pz somevalue
r pexpireat pz [expr {([clock seconds]+3000)*1000}]
# Reload and check
waitForBgrewriteaof r
# We need to wait two seconds to avoid false positives here, otherwise
# the DEBUG LOADAOF command may read a partial file.
# Another solution would be to set the fsync policy to no, since this
# prevents write() to be delayed by the completion of fsync().
after 2000
r debug loadaof
set ttl [r ttl x]
assert {$ttl > 900 && $ttl <= 1000}
set ttl [r ttl y]
assert {$ttl > 1900 && $ttl <= 2000}
set ttl [r ttl z]
assert {$ttl > 2900 && $ttl <= 3000}
set ttl [r ttl px]
assert {$ttl > 900 && $ttl <= 1000}
set ttl [r ttl py]
assert {$ttl > 1900 && $ttl <= 2000}
set ttl [r ttl pz]
assert {$ttl > 2900 && $ttl <= 3000}
r config set appendonly no
}
tags {protocol} {
2011-01-09 13:42:56 -05:00
test {PIPELINING stresser (also a regression for the old epoll bug)} {
if {$::tls} {
set fd2 [::tls::socket [srv host] [srv port]]
} else {
set fd2 [socket [srv host] [srv port]]
}
2011-01-09 13:42:56 -05:00
fconfigure $fd2 -encoding binary -translation binary
puts -nonewline $fd2 "SELECT 9\r\n"
flush $fd2
gets $fd2
2011-01-09 13:42:56 -05:00
for {set i 0} {$i < 100000} {incr i} {
set q {}
set val "0000${i}0000"
append q "SET key:$i $val\r\n"
puts -nonewline $fd2 $q
set q {}
append q "GET key:$i\r\n"
puts -nonewline $fd2 $q
}
flush $fd2
2011-01-09 13:42:56 -05:00
for {set i 0} {$i < 100000} {incr i} {
gets $fd2 line
gets $fd2 count
set count [string range $count 1 end]
set val [read $fd2 $count]
read $fd2 2
}
close $fd2
set _ 1
} {1}
}
test {APPEND basics} {
2016-04-25 09:49:57 -04:00
r del foo
list [r append foo bar] [r get foo] \
[r append foo 100] [r get foo]
} {3 bar 6 bar100}
test {APPEND basics, integer encoded values} {
set res {}
r del foo
r append foo 1
r append foo 2
lappend res [r get foo]
r set foo 1
r append foo 2
lappend res [r get foo]
} {12 12}
test {APPEND fuzzing} {
set err {}
foreach type {binary alpha compr} {
set buf {}
r del x
for {set i 0} {$i < 1000} {incr i} {
set bin [randstring 0 10 $type]
append buf $bin
r append x $bin
}
if {$buf != [r get x]} {
set err "Expected '$buf' found '[r get x]'"
break
}
}
set _ $err
} {}
# Leave the user with a clean DB before to exit
test {FLUSHDB} {
set aux {}
r select 9
r flushdb
lappend aux [r dbsize]
r select 10
r flushdb
lappend aux [r dbsize]
} {0 0}
test {Perform a final SAVE to leave a clean DB on disk} {
waitForBgsave r
r save
} {OK}
test {RESET clears client state} {
r client setname test-client
r client tracking on
assert_equal [r reset] "RESET"
set client [r client list]
assert_match {*name= *} $client
assert_match {*flags=N *} $client
}
test {RESET clears MONITOR state} {
set rd [redis_deferring_client]
$rd monitor
assert_equal [$rd read] "OK"
$rd reset
# skip reset ouptut
$rd read
assert_equal [$rd read] "RESET"
assert_no_match {*flags=O*} [r client list]
}
test {RESET clears and discards MULTI state} {
r multi
r set key-a a
r reset
catch {r exec} err
assert_match {*EXEC without MULTI*} $err
}
test {RESET clears Pub/Sub state} {
r subscribe channel-1
r reset
# confirm we're not subscribed by executing another command
r set key val
}
test {RESET clears authenticated state} {
r acl setuser user1 on >secret +@all
r auth user1 secret
assert_equal [r acl whoami] user1
r reset
assert_equal [r acl whoami] default
}
}
start_server {tags {"other"}} {
test {Don't rehash if redis has child proecess} {
r config set save ""
r config set rdb-key-save-delay 1000000
populate 4096 "" 1
r bgsave
r mset k1 v1 k2 v2
# Hash table should not rehash
assert_no_match "*table size: 8192*" [r debug HTSTATS 9]
exec kill -9 [get_child_pid 0]
after 200
# Hash table should rehash since there is no child process,
Limit the main db and expires dictionaries to expand (#7954) As we know, redis may reject user's requests or evict some keys if used memory is over maxmemory. Dictionaries expanding may make things worse, some big dictionaries, such as main db and expires dict, may eat huge memory at once for allocating a new big hash table and be far more than maxmemory after expanding. There are related issues: #4213 #4583 More details, when expand dict in redis, we will allocate a new big ht[1] that generally is double of ht[0], The size of ht[1] will be very big if ht[0] already is big. For db dict, if we have more than 64 million keys, we need to cost 1GB for ht[1] when dict expands. If the sum of used memory and new hash table of dict needed exceeds maxmemory, we shouldn't allow the dict to expand. Because, if we enable keys eviction, we still couldn't add much more keys after eviction and rehashing, what's worse, redis will keep less keys when redis only remains a little memory for storing new hash table instead of users' data. Moreover users can't write data in redis if disable keys eviction. What this commit changed ? Add a new member function expandAllowed for dict type, it provide a way for caller to allow expand or not. We expose two parameters for this function: more memory needed for expanding and dict current load factor, users can implement a function to make a decision by them. For main db dict and expires dict type, these dictionaries may be very big and cost huge memory for expanding, so we implement a judgement function: we can stop dict to expand provisionally if used memory will be over maxmemory after dict expands, but to guarantee the performance of redis, we still allow dict to expand if dict load factor exceeds the safe load factor. Add test cases to verify we don't allow main db to expand when left memory is not enough, so that avoid keys eviction. Other changes: For new hash table size when expand. Before this commit, the size is that double used of dict and later _dictNextPower. Actually we aim to control a dict load factor between 0.5 and 1.0. Now we replace *2 with +1, since the first check is that used >= size, the outcome of before will usually be the same as _dictNextPower(used+1). The only case where it'll differ is when dict_can_resize is false during fork, so that later the _dictNextPower(used*2) will cause the dict to jump to *4 (i.e. _dictNextPower(1025*2) will return 4096). Fix rehash test cases due to changing algorithm of new hash table size when expand.
2020-12-06 04:53:04 -05:00
# size is power of two and over 4098, so it is 8192
r set k3 v3
Limit the main db and expires dictionaries to expand (#7954) As we know, redis may reject user's requests or evict some keys if used memory is over maxmemory. Dictionaries expanding may make things worse, some big dictionaries, such as main db and expires dict, may eat huge memory at once for allocating a new big hash table and be far more than maxmemory after expanding. There are related issues: #4213 #4583 More details, when expand dict in redis, we will allocate a new big ht[1] that generally is double of ht[0], The size of ht[1] will be very big if ht[0] already is big. For db dict, if we have more than 64 million keys, we need to cost 1GB for ht[1] when dict expands. If the sum of used memory and new hash table of dict needed exceeds maxmemory, we shouldn't allow the dict to expand. Because, if we enable keys eviction, we still couldn't add much more keys after eviction and rehashing, what's worse, redis will keep less keys when redis only remains a little memory for storing new hash table instead of users' data. Moreover users can't write data in redis if disable keys eviction. What this commit changed ? Add a new member function expandAllowed for dict type, it provide a way for caller to allow expand or not. We expose two parameters for this function: more memory needed for expanding and dict current load factor, users can implement a function to make a decision by them. For main db dict and expires dict type, these dictionaries may be very big and cost huge memory for expanding, so we implement a judgement function: we can stop dict to expand provisionally if used memory will be over maxmemory after dict expands, but to guarantee the performance of redis, we still allow dict to expand if dict load factor exceeds the safe load factor. Add test cases to verify we don't allow main db to expand when left memory is not enough, so that avoid keys eviction. Other changes: For new hash table size when expand. Before this commit, the size is that double used of dict and later _dictNextPower. Actually we aim to control a dict load factor between 0.5 and 1.0. Now we replace *2 with +1, since the first check is that used >= size, the outcome of before will usually be the same as _dictNextPower(used+1). The only case where it'll differ is when dict_can_resize is false during fork, so that later the _dictNextPower(used*2) will cause the dict to jump to *4 (i.e. _dictNextPower(1025*2) will return 4096). Fix rehash test cases due to changing algorithm of new hash table size when expand.
2020-12-06 04:53:04 -05:00
assert_match "*table size: 8192*" [r debug HTSTATS 9]
}
}