redict/src/dict.c

767 lines
23 KiB
C
Raw Normal View History

2009-03-22 05:30:00 -04:00
/* Hash Tables Implementation.
*
* This file implements in memory hash tables with insert/del/replace/find/
* get-random-element operations. Hash tables will auto resize if needed
* tables of power of two in size are used, collisions are handled by
* chaining. See the source code for more information... :)
*
* Copyright (c) 2006-2010, Salvatore Sanfilippo <antirez at gmail dot com>
2009-03-22 05:30:00 -04:00
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "fmacros.h"
2009-03-22 05:30:00 -04:00
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <assert.h>
#include <limits.h>
2010-04-15 12:07:57 -04:00
#include <sys/time.h>
#include <ctype.h>
2009-03-22 05:30:00 -04:00
#include "dict.h"
#include "zmalloc.h"
/* Using dictEnableResize() / dictDisableResize() we make possible to
* enable/disable resizing of the hash table as needed. This is very important
* for Redis, as we use copy-on-write and don't want to move too much memory
* around when there is a child performing saving operations.
*
* Note that even when dict_can_resize is set to 0, not all resizes are
* prevented: an hash table is still allowed to grow if the ratio between
* the number of elements and the buckets > dict_force_resize_ratio. */
static int dict_can_resize = 1;
static unsigned int dict_force_resize_ratio = 5;
2009-03-22 05:30:00 -04:00
/* -------------------------- private prototypes ---------------------------- */
static int _dictExpandIfNeeded(dict *ht);
static unsigned long _dictNextPower(unsigned long size);
2009-03-22 05:30:00 -04:00
static int _dictKeyIndex(dict *ht, const void *key);
static int _dictInit(dict *ht, dictType *type, void *privDataPtr);
/* -------------------------- hash functions -------------------------------- */
/* Thomas Wang's 32 bit Mix Function */
unsigned int dictIntHashFunction(unsigned int key)
{
key += ~(key << 15);
key ^= (key >> 10);
key += (key << 3);
key ^= (key >> 6);
key += ~(key << 11);
key ^= (key >> 16);
return key;
}
/* Identity hash function for integer keys */
unsigned int dictIdentityHashFunction(unsigned int key)
{
return key;
}
static int dict_hash_function_seed = 5381;
void dictSetHashFunctionSeed(unsigned int seed) {
dict_hash_function_seed = seed;
}
unsigned int dictGetHashFunctionSeed(void) {
return dict_hash_function_seed;
}
2009-03-22 05:30:00 -04:00
/* Generic hash function (a popular one from Bernstein).
* I tested a few and this was the best. */
unsigned int dictGenHashFunction(const unsigned char *buf, int len) {
unsigned int hash = dict_hash_function_seed;
2009-03-22 05:30:00 -04:00
while (len--)
hash = ((hash << 5) + hash) + (*buf++); /* hash * 33 + c */
return hash;
}
/* And a case insensitive version */
unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len) {
unsigned int hash = dict_hash_function_seed;
while (len--)
hash = ((hash << 5) + hash) + (tolower(*buf++)); /* hash * 33 + c */
return hash;
}
2009-03-22 05:30:00 -04:00
/* ----------------------------- API implementation ------------------------- */
/* Reset an hashtable already initialized with ht_init().
* NOTE: This function should only called by ht_destroy(). */
static void _dictReset(dictht *ht)
2009-03-22 05:30:00 -04:00
{
ht->table = NULL;
ht->size = 0;
ht->sizemask = 0;
ht->used = 0;
}
/* Create a new hash table */
dict *dictCreate(dictType *type,
void *privDataPtr)
{
dict *d = zmalloc(sizeof(*d));
2009-03-22 05:30:00 -04:00
_dictInit(d,type,privDataPtr);
return d;
2009-03-22 05:30:00 -04:00
}
/* Initialize the hash table */
int _dictInit(dict *d, dictType *type,
2009-03-22 05:30:00 -04:00
void *privDataPtr)
{
_dictReset(&d->ht[0]);
_dictReset(&d->ht[1]);
d->type = type;
d->privdata = privDataPtr;
d->rehashidx = -1;
d->iterators = 0;
2009-03-22 05:30:00 -04:00
return DICT_OK;
}
/* Resize the table to the minimal size that contains all the elements,
2012-03-15 02:27:14 -04:00
* but with the invariant of a USED/BUCKETS ratio near to <= 1 */
int dictResize(dict *d)
2009-03-22 05:30:00 -04:00
{
int minimal;
2009-03-22 05:30:00 -04:00
if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;
minimal = d->ht[0].used;
2009-03-22 05:30:00 -04:00
if (minimal < DICT_HT_INITIAL_SIZE)
minimal = DICT_HT_INITIAL_SIZE;
return dictExpand(d, minimal);
2009-03-22 05:30:00 -04:00
}
/* Expand or create the hashtable */
int dictExpand(dict *d, unsigned long size)
2009-03-22 05:30:00 -04:00
{
dictht n; /* the new hashtable */
unsigned long realsize = _dictNextPower(size);
2009-03-22 05:30:00 -04:00
/* the size is invalid if it is smaller than the number of
* elements already inside the hashtable */
if (dictIsRehashing(d) || d->ht[0].used > size)
2009-03-22 05:30:00 -04:00
return DICT_ERR;
/* Allocate the new hashtable and initialize all pointers to NULL */
2009-03-22 05:30:00 -04:00
n.size = realsize;
n.sizemask = realsize-1;
n.table = zcalloc(realsize*sizeof(dictEntry*));
n.used = 0;
2009-03-22 05:30:00 -04:00
/* Is this the first initialization? If so it's not really a rehashing
* we just set the first hash table so that it can accept keys. */
if (d->ht[0].table == NULL) {
d->ht[0] = n;
return DICT_OK;
}
2009-03-22 05:30:00 -04:00
/* Prepare a second hash table for incremental rehashing */
d->ht[1] = n;
d->rehashidx = 0;
return DICT_OK;
}
/* Performs N steps of incremental rehashing. Returns 1 if there are still
* keys to move from the old to the new hash table, otherwise 0 is returned.
* Note that a rehashing step consists in moving a bucket (that may have more
* thank one key as we use chaining) from the old to the new hash table. */
int dictRehash(dict *d, int n) {
if (!dictIsRehashing(d)) return 0;
while(n--) {
dictEntry *de, *nextde;
/* Check if we already rehashed the whole table... */
if (d->ht[0].used == 0) {
zfree(d->ht[0].table);
d->ht[0] = d->ht[1];
_dictReset(&d->ht[1]);
d->rehashidx = -1;
return 0;
}
/* Note that rehashidx can't overflow as we are sure there are more
* elements because ht[0].used != 0 */
assert(d->ht[0].size > (unsigned)d->rehashidx);
while(d->ht[0].table[d->rehashidx] == NULL) d->rehashidx++;
de = d->ht[0].table[d->rehashidx];
/* Move all the keys in this bucket from the old to the new hash HT */
while(de) {
2009-03-22 05:30:00 -04:00
unsigned int h;
nextde = de->next;
/* Get the index in the new hash table */
h = dictHashKey(d, de->key) & d->ht[1].sizemask;
de->next = d->ht[1].table[h];
d->ht[1].table[h] = de;
d->ht[0].used--;
d->ht[1].used++;
de = nextde;
2009-03-22 05:30:00 -04:00
}
d->ht[0].table[d->rehashidx] = NULL;
d->rehashidx++;
2009-03-22 05:30:00 -04:00
}
return 1;
}
2009-03-22 05:30:00 -04:00
2010-04-15 12:07:57 -04:00
long long timeInMilliseconds(void) {
struct timeval tv;
gettimeofday(&tv,NULL);
return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);
}
/* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
int dictRehashMilliseconds(dict *d, int ms) {
long long start = timeInMilliseconds();
int rehashes = 0;
while(dictRehash(d,100)) {
rehashes += 100;
if (timeInMilliseconds()-start > ms) break;
}
return rehashes;
}
/* This function performs just a step of rehashing, and only if there are
* no safe iterators bound to our hash table. When we have iterators in the
* middle of a rehashing we can't mess with the two hash tables otherwise
* some element can be missed or duplicated.
*
* This function is called by common lookup or update operations in the
* dictionary so that the hash table automatically migrates from H1 to H2
* while it is actively used. */
static void _dictRehashStep(dict *d) {
if (d->iterators == 0) dictRehash(d,1);
2009-03-22 05:30:00 -04:00
}
/* Add an element to the target hash table */
int dictAdd(dict *d, void *key, void *val)
{
dictEntry *entry = dictAddRaw(d,key);
if (!entry) return DICT_ERR;
dictSetVal(d, entry, val);
return DICT_OK;
}
/* Low level add. This function adds the entry but instead of setting
* a value returns the dictEntry structure to the user, that will make
* sure to fill the value field as he wishes.
*
* This function is also directly expoed to user API to be called
* mainly in order to store non-pointers inside the hash value, example:
*
* entry = dictAddRaw(dict,mykey);
* if (entry != NULL) dictSetSignedIntegerVal(entry,1000);
*
* Return values:
*
* If key already exists NULL is returned.
* If key was added, the hash entry is returned to be manipulated by the caller.
*/
dictEntry *dictAddRaw(dict *d, void *key)
2009-03-22 05:30:00 -04:00
{
int index;
dictEntry *entry;
dictht *ht;
if (dictIsRehashing(d)) _dictRehashStep(d);
2009-03-22 05:30:00 -04:00
/* Get the index of the new element, or -1 if
* the element already exists. */
if ((index = _dictKeyIndex(d, key)) == -1)
return NULL;
2009-03-22 05:30:00 -04:00
/* Allocate the memory and store the new entry */
ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
entry = zmalloc(sizeof(*entry));
2009-03-22 05:30:00 -04:00
entry->next = ht->table[index];
ht->table[index] = entry;
ht->used++;
2009-03-22 05:30:00 -04:00
/* Set the hash entry fields. */
dictSetKey(d, entry, key);
return entry;
2009-03-22 05:30:00 -04:00
}
/* Add an element, discarding the old if the key already exists.
* Return 1 if the key was added from scratch, 0 if there was already an
* element with such key and dictReplace() just performed a value update
* operation. */
int dictReplace(dict *d, void *key, void *val)
2009-03-22 05:30:00 -04:00
{
dictEntry *entry, auxentry;
2009-03-22 05:30:00 -04:00
/* Try to add the element. If the key
* does not exists dictAdd will suceed. */
if (dictAdd(d, key, val) == DICT_OK)
return 1;
2009-03-22 05:30:00 -04:00
/* It already exists, get the entry */
entry = dictFind(d, key);
/* Set the new value and free the old one. Note that it is important
* to do that in this order, as the value may just be exactly the same
* as the previous one. In this context, think to reference counting,
* you want to increment (set), and then decrement (free), and not the
* reverse. */
auxentry = *entry;
dictSetVal(d, entry, val);
dictFreeVal(d, &auxentry);
return 0;
2009-03-22 05:30:00 -04:00
}
/* dictReplaceRaw() is simply a version of dictAddRaw() that always
* returns the hash entry of the specified key, even if the key already
* exists and can't be added (in that case the entry of the already
* existing key is returned.)
*
* See dictAddRaw() for more information. */
dictEntry *dictReplaceRaw(dict *d, void *key) {
dictEntry *entry = dictFind(d,key);
return entry ? entry : dictAddRaw(d,key);
}
2009-03-22 05:30:00 -04:00
/* Search and remove an element */
static int dictGenericDelete(dict *d, const void *key, int nofree)
2009-03-22 05:30:00 -04:00
{
unsigned int h, idx;
2009-03-22 05:30:00 -04:00
dictEntry *he, *prevHe;
int table;
2009-03-22 05:30:00 -04:00
if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */
if (dictIsRehashing(d)) _dictRehashStep(d);
h = dictHashKey(d, key);
2009-03-22 05:30:00 -04:00
for (table = 0; table <= 1; table++) {
idx = h & d->ht[table].sizemask;
he = d->ht[table].table[idx];
prevHe = NULL;
while(he) {
if (dictCompareKeys(d, key, he->key)) {
/* Unlink the element from the list */
if (prevHe)
prevHe->next = he->next;
else
d->ht[table].table[idx] = he->next;
if (!nofree) {
dictFreeKey(d, he);
dictFreeVal(d, he);
}
zfree(he);
d->ht[table].used--;
return DICT_OK;
2009-03-22 05:30:00 -04:00
}
prevHe = he;
he = he->next;
2009-03-22 05:30:00 -04:00
}
if (!dictIsRehashing(d)) break;
2009-03-22 05:30:00 -04:00
}
return DICT_ERR; /* not found */
}
int dictDelete(dict *ht, const void *key) {
return dictGenericDelete(ht,key,0);
}
int dictDeleteNoFree(dict *ht, const void *key) {
return dictGenericDelete(ht,key,1);
}
/* Destroy an entire dictionary */
int _dictClear(dict *d, dictht *ht)
2009-03-22 05:30:00 -04:00
{
unsigned long i;
2009-03-22 05:30:00 -04:00
/* Free all the elements */
for (i = 0; i < ht->size && ht->used > 0; i++) {
dictEntry *he, *nextHe;
if ((he = ht->table[i]) == NULL) continue;
while(he) {
nextHe = he->next;
dictFreeKey(d, he);
dictFreeVal(d, he);
zfree(he);
2009-03-22 05:30:00 -04:00
ht->used--;
he = nextHe;
}
}
/* Free the table and the allocated cache structure */
zfree(ht->table);
2009-03-22 05:30:00 -04:00
/* Re-initialize the table */
_dictReset(ht);
return DICT_OK; /* never fails */
}
/* Clear & Release the hash table */
void dictRelease(dict *d)
2009-03-22 05:30:00 -04:00
{
_dictClear(d,&d->ht[0]);
_dictClear(d,&d->ht[1]);
zfree(d);
2009-03-22 05:30:00 -04:00
}
dictEntry *dictFind(dict *d, const void *key)
2009-03-22 05:30:00 -04:00
{
dictEntry *he;
unsigned int h, idx, table;
if (d->ht[0].size == 0) return NULL; /* We don't have a table at all */
if (dictIsRehashing(d)) _dictRehashStep(d);
h = dictHashKey(d, key);
for (table = 0; table <= 1; table++) {
idx = h & d->ht[table].sizemask;
he = d->ht[table].table[idx];
while(he) {
if (dictCompareKeys(d, key, he->key))
return he;
he = he->next;
}
if (!dictIsRehashing(d)) return NULL;
2009-03-22 05:30:00 -04:00
}
return NULL;
}
void *dictFetchValue(dict *d, const void *key) {
dictEntry *he;
he = dictFind(d,key);
return he ? dictGetVal(he) : NULL;
}
dictIterator *dictGetIterator(dict *d)
2009-03-22 05:30:00 -04:00
{
dictIterator *iter = zmalloc(sizeof(*iter));
2009-03-22 05:30:00 -04:00
iter->d = d;
iter->table = 0;
2009-03-22 05:30:00 -04:00
iter->index = -1;
iter->safe = 0;
2009-03-22 05:30:00 -04:00
iter->entry = NULL;
iter->nextEntry = NULL;
return iter;
}
dictIterator *dictGetSafeIterator(dict *d) {
dictIterator *i = dictGetIterator(d);
i->safe = 1;
return i;
}
2009-03-22 05:30:00 -04:00
dictEntry *dictNext(dictIterator *iter)
{
while (1) {
if (iter->entry == NULL) {
dictht *ht = &iter->d->ht[iter->table];
if (iter->safe && iter->index == -1 && iter->table == 0)
iter->d->iterators++;
2009-03-22 05:30:00 -04:00
iter->index++;
if (iter->index >= (signed) ht->size) {
if (dictIsRehashing(iter->d) && iter->table == 0) {
iter->table++;
iter->index = 0;
ht = &iter->d->ht[1];
} else {
break;
}
}
iter->entry = ht->table[iter->index];
2009-03-22 05:30:00 -04:00
} else {
iter->entry = iter->nextEntry;
}
if (iter->entry) {
/* We need to save the 'next' here, the iterator user
* may delete the entry we are returning. */
iter->nextEntry = iter->entry->next;
return iter->entry;
}
}
return NULL;
}
void dictReleaseIterator(dictIterator *iter)
{
if (iter->safe && !(iter->index == -1 && iter->table == 0))
iter->d->iterators--;
zfree(iter);
2009-03-22 05:30:00 -04:00
}
/* Return a random entry from the hash table. Useful to
* implement randomized algorithms */
dictEntry *dictGetRandomKey(dict *d)
2009-03-22 05:30:00 -04:00
{
dictEntry *he, *orighe;
2009-03-22 05:30:00 -04:00
unsigned int h;
int listlen, listele;
if (dictSize(d) == 0) return NULL;
if (dictIsRehashing(d)) _dictRehashStep(d);
if (dictIsRehashing(d)) {
do {
h = random() % (d->ht[0].size+d->ht[1].size);
he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] :
d->ht[0].table[h];
} while(he == NULL);
} else {
do {
h = random() & d->ht[0].sizemask;
he = d->ht[0].table[h];
} while(he == NULL);
}
2009-03-22 05:30:00 -04:00
/* Now we found a non empty bucket, but it is a linked
* list and we need to get a random element from the list.
* The only sane way to do so is counting the elements and
2009-03-22 05:30:00 -04:00
* select a random index. */
listlen = 0;
orighe = he;
2009-03-22 05:30:00 -04:00
while(he) {
he = he->next;
listlen++;
}
listele = random() % listlen;
he = orighe;
2009-03-22 05:30:00 -04:00
while(listele--) he = he->next;
return he;
}
/* ------------------------- private functions ------------------------------ */
/* Expand the hash table if needed */
static int _dictExpandIfNeeded(dict *d)
2009-03-22 05:30:00 -04:00
{
/* Incremental rehashing already in progress. Return. */
if (dictIsRehashing(d)) return DICT_OK;
/* If the hash table is empty expand it to the intial size. */
if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);
/* If we reached the 1:1 ratio, and we are allowed to resize the hash
* table (global setting) or we should avoid it but the ratio between
* elements/buckets is over the "safe" threshold, we resize doubling
* the number of buckets. */
if (d->ht[0].used >= d->ht[0].size &&
(dict_can_resize ||
d->ht[0].used/d->ht[0].size > dict_force_resize_ratio))
{
return dictExpand(d, ((d->ht[0].size > d->ht[0].used) ?
d->ht[0].size : d->ht[0].used)*2);
}
2009-03-22 05:30:00 -04:00
return DICT_OK;
}
/* Our hash table capability is a power of two */
static unsigned long _dictNextPower(unsigned long size)
2009-03-22 05:30:00 -04:00
{
unsigned long i = DICT_HT_INITIAL_SIZE;
2009-03-22 05:30:00 -04:00
if (size >= LONG_MAX) return LONG_MAX;
2009-03-22 05:30:00 -04:00
while(1) {
if (i >= size)
return i;
i *= 2;
}
}
/* Returns the index of a free slot that can be populated with
* an hash entry for the given 'key'.
* If the key already exists, -1 is returned.
*
* Note that if we are in the process of rehashing the hash table, the
* index is always returned in the context of the second (new) hash table. */
static int _dictKeyIndex(dict *d, const void *key)
2009-03-22 05:30:00 -04:00
{
2010-04-15 12:07:57 -04:00
unsigned int h, idx, table;
2009-03-22 05:30:00 -04:00
dictEntry *he;
/* Expand the hashtable if needed */
if (_dictExpandIfNeeded(d) == DICT_ERR)
2009-03-22 05:30:00 -04:00
return -1;
/* Compute the key hash value */
h = dictHashKey(d, key);
2010-04-15 12:07:57 -04:00
for (table = 0; table <= 1; table++) {
idx = h & d->ht[table].sizemask;
/* Search if this slot does not already contain the given key */
he = d->ht[table].table[idx];
while(he) {
if (dictCompareKeys(d, key, he->key))
2010-04-15 12:07:57 -04:00
return -1;
he = he->next;
}
if (!dictIsRehashing(d)) break;
2009-03-22 05:30:00 -04:00
}
2010-04-15 12:07:57 -04:00
return idx;
2009-03-22 05:30:00 -04:00
}
void dictEmpty(dict *d) {
_dictClear(d,&d->ht[0]);
_dictClear(d,&d->ht[1]);
d->rehashidx = -1;
d->iterators = 0;
2009-03-22 05:30:00 -04:00
}
#define DICT_STATS_VECTLEN 50
static void _dictPrintStatsHt(dictht *ht) {
unsigned long i, slots = 0, chainlen, maxchainlen = 0;
unsigned long totchainlen = 0;
unsigned long clvector[DICT_STATS_VECTLEN];
2009-03-22 05:30:00 -04:00
if (ht->used == 0) {
printf("No stats available for empty dictionaries\n");
return;
}
for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0;
for (i = 0; i < ht->size; i++) {
dictEntry *he;
if (ht->table[i] == NULL) {
clvector[0]++;
continue;
}
slots++;
/* For each hash entry on this slot... */
chainlen = 0;
he = ht->table[i];
while(he) {
chainlen++;
he = he->next;
}
clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;
if (chainlen > maxchainlen) maxchainlen = chainlen;
totchainlen += chainlen;
}
printf("Hash table stats:\n");
printf(" table size: %ld\n", ht->size);
printf(" number of elements: %ld\n", ht->used);
printf(" different slots: %ld\n", slots);
printf(" max chain length: %ld\n", maxchainlen);
2009-03-22 05:30:00 -04:00
printf(" avg chain length (counted): %.02f\n", (float)totchainlen/slots);
printf(" avg chain length (computed): %.02f\n", (float)ht->used/slots);
printf(" Chain length distribution:\n");
for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {
if (clvector[i] == 0) continue;
printf(" %s%ld: %ld (%.02f%%)\n",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector[i], ((float)clvector[i]/ht->size)*100);
2009-03-22 05:30:00 -04:00
}
}
void dictPrintStats(dict *d) {
_dictPrintStatsHt(&d->ht[0]);
if (dictIsRehashing(d)) {
printf("-- Rehashing into ht[1]:\n");
_dictPrintStatsHt(&d->ht[1]);
}
}
void dictEnableResize(void) {
dict_can_resize = 1;
}
void dictDisableResize(void) {
dict_can_resize = 0;
}
#if 0
/* The following are just example hash table types implementations.
* Not useful for Redis so they are commented out.
*/
2009-03-22 05:30:00 -04:00
/* ----------------------- StringCopy Hash Table Type ------------------------*/
static unsigned int _dictStringCopyHTHashFunction(const void *key)
{
return dictGenHashFunction(key, strlen(key));
}
2010-07-24 16:37:01 -04:00
static void *_dictStringDup(void *privdata, const void *key)
2009-03-22 05:30:00 -04:00
{
int len = strlen(key);
char *copy = zmalloc(len+1);
2009-03-22 05:30:00 -04:00
DICT_NOTUSED(privdata);
memcpy(copy, key, len);
copy[len] = '\0';
return copy;
}
static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1,
const void *key2)
{
DICT_NOTUSED(privdata);
return strcmp(key1, key2) == 0;
}
2010-07-24 16:37:01 -04:00
static void _dictStringDestructor(void *privdata, void *key)
2009-03-22 05:30:00 -04:00
{
DICT_NOTUSED(privdata);
zfree(key);
2009-03-22 05:30:00 -04:00
}
dictType dictTypeHeapStringCopyKey = {
2010-07-24 16:37:01 -04:00
_dictStringCopyHTHashFunction, /* hash function */
_dictStringDup, /* key dup */
NULL, /* val dup */
_dictStringCopyHTKeyCompare, /* key compare */
_dictStringDestructor, /* key destructor */
NULL /* val destructor */
2009-03-22 05:30:00 -04:00
};
/* This is like StringCopy but does not auto-duplicate the key.
* It's used for intepreter's shared strings. */
dictType dictTypeHeapStrings = {
2010-07-24 16:37:01 -04:00
_dictStringCopyHTHashFunction, /* hash function */
NULL, /* key dup */
NULL, /* val dup */
_dictStringCopyHTKeyCompare, /* key compare */
_dictStringDestructor, /* key destructor */
NULL /* val destructor */
2009-03-22 05:30:00 -04:00
};
/* This is like StringCopy but also automatically handle dynamic
* allocated C strings as values. */
dictType dictTypeHeapStringCopyKeyValue = {
2010-07-24 16:37:01 -04:00
_dictStringCopyHTHashFunction, /* hash function */
_dictStringDup, /* key dup */
_dictStringDup, /* val dup */
_dictStringCopyHTKeyCompare, /* key compare */
_dictStringDestructor, /* key destructor */
_dictStringDestructor, /* val destructor */
2009-03-22 05:30:00 -04:00
};
#endif