redict/src/hyperloglog.c

717 lines
27 KiB
C
Raw Normal View History

/* hyperloglog.c - Redis HyperLogLog probabilistic cardinality approximation.
* This file implements the algorithm and the exported Redis commands.
*
* Copyright (c) 2014, Salvatore Sanfilippo <antirez at gmail dot com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "redis.h"
2014-03-28 11:24:35 -04:00
#include <stdint.h>
2014-03-28 12:37:18 -04:00
#include <math.h>
/* The Redis HyperLogLog implementation is based on the following ideas:
*
* * The use of a 64 bit hash function as proposed in [1], in order to don't
* limited to cardinalities up to 10^9, at the cost of just 1 additional
* bit per register.
* * The use of 16384 6-bit registers for a great level of accuracy, using
* a total of 12k per key.
* * The use of the Redis string data type. No new type is introduced.
* * No attempt is made to compress the data structure as in [1]. Also the
* algorithm used is the original HyperLogLog Algorithm as in [2], with
* the only difference that a 64 bit hash function is used, so no correction
* is performed for values near 2^32 as in [1].
*
* [1] Heule, Nunkesser, Hall: HyperLogLog in Practice: Algorithmic
* Engineering of a State of The Art Cardinality Estimation Algorithm.
*
* [2] P. Flajolet, Éric Fusy, O. Gandouet, and F. Meunier. Hyperloglog: The
* analysis of a near-optimal cardinality estimation algorithm.
*
* The representation used by Redis is the following:
*
* +--------+--------+--------+------// //--+----------+------+-----+
* |11000000|22221111|33333322|55444444 .... | uint64_t | HYLL | Ver |
* +--------+--------+--------+------// //--+----------+------+-----+
*
* The 6 bits counters are encoded one after the other starting from the
* LSB to the MSB, and using the next bytes as needed.
*
* At the end of the 16k counters, there is an additional 64 bit integer
* stored in little endian format with the latest cardinality computed that
* can be reused if the data structure was not modified since the last
* computation (this is useful because there are high probabilities that
* HLLADD operations don't modify the actual data structure and hence the
* approximated cardinality).
*
* After the cached cardinality there are 4 bytes of magic set to the
* string "HYLL", and a 4 bytes version field that is reserved for
* future uses and is currently set to 0.
*
* When the most significant bit in the most significant byte of the cached
* cardinality is set, it means that the data structure was modified and
* we can't reuse the cached value that must be recomputed. */
#define REDIS_HLL_P 14 /* The greater is P, the smaller the error. */
#define REDIS_HLL_REGISTERS (1<<REDIS_HLL_P) /* With P=14, 16384 registers. */
#define REDIS_HLL_P_MASK (REDIS_HLL_REGISTERS-1) /* Mask to index register. */
#define REDIS_HLL_BITS 6 /* Enough to count up to 63 leading zeroes. */
#define REDIS_HLL_REGISTER_MAX ((1<<REDIS_HLL_BITS)-1)
/* Note: REDIS_HLL_SIZE define has a final "+8" since we store a 64 bit
* integer at the end of the HyperLogLog structure to cache the cardinality. */
#define REDIS_HLL_SIZE ((REDIS_HLL_REGISTERS*REDIS_HLL_BITS+7)/8)+8+8
/* =========================== Low level bit macros ========================= */
/* We need to get and set 6 bit counters in an array of 8 bit bytes.
* We use macros to make sure the code is inlined since speed is critical
* especially in order to compute the approximated cardinality in
* HLLCOUNT where we need to access all the registers at once.
* For the same reason we also want to avoid conditionals in this code path.
*
* +--------+--------+--------+------//
* |11000000|22221111|33333322|55444444
* +--------+--------+--------+------//
*
* Note: in the above representation the most significant bit (MSB)
* of every byte is on the left. We start using bits from the LSB to MSB,
* and so forth passing to the next byte.
*
* Example, we want to access to counter at pos = 1 ("111111" in the
* illustration above).
*
* The index of the first byte b0 containing our data is:
*
* b0 = 6 * pos / 8 = 0
*
* +--------+
* |11000000| <- Our byte at b0
* +--------+
*
* The position of the first bit (counting from the LSB = 0) in the byte
* is given by:
*
* fb = 6 * pos % 8 -> 6
*
* Right shift b0 of 'fb' bits.
*
* +--------+
* |11000000| <- Initial value of b0
* |00000011| <- After right shift of 6 pos.
* +--------+
*
* Left shift b1 of bits 8-fb bits (2 bits)
*
* +--------+
* |22221111| <- Initial value of b1
* |22111100| <- After left shift of 2 bits.
* +--------+
*
* OR the two bits, and finally AND with 111111 (63 in decimal) to
* clean the higher order bits we are not interested in:
*
* +--------+
* |00000011| <- b0 right shifted
* |22111100| <- b1 left shifted
* |22111111| <- b0 OR b1
* | 111111| <- (b0 OR b1) AND 63, our value.
* +--------+
*
* We can try with a different example, like pos = 0. In this case
* the 6-bit counter is actually contained in a single byte.
*
* b0 = 6 * pos / 8 = 0
*
* +--------+
* |11000000| <- Our byte at b0
* +--------+
*
* fb = 6 * pos % 8 = 0
*
* So we right shift of 0 bits (no shift in practice) and
* left shift the next byte of 8 bits, even if we don't use it,
* but this has the effect of clearing the bits so the result
* will not be affacted after the OR.
*
* -------------------------------------------------------------------------
*
* Setting the register is a bit more complex, let's assume that 'val'
* is the value we want to set, already in the right range.
*
* We need two steps, in one we need to clear the bits, and in the other
* we need to bitwise-OR the new bits.
*
* Let's try with 'pos' = 1, so our first byte at 'b' is 0,
*
* "fb" is 6 in this case.
*
* +--------+
* |11000000| <- Our byte at b0
* +--------+
*
* To create a AND-mask to clear the bits about this position, we just
* initialize the mask with the value 63, left shift it of "fs" bits,
* and finally invert the result.
*
* +--------+
* |00111111| <- "mask" starts at 63
* |11000000| <- "mask" after left shift of "ls" bits.
* |00111111| <- "mask" after invert.
* +--------+
*
* Now we can bitwise-AND the byte at "b" with the mask, and bitwise-OR
* it with "val" left-shifted of "ls" bits to set the new bits.
*
* Now let's focus on the next byte b1:
*
* +--------+
* |22221111| <- Initial value of b1
* +--------+
*
* To build the AND mask we start again with the 63 value, right shift
* it by 8-fb bits, and invert it.
*
* +--------+
* |00111111| <- "mask" set at 2&6-1
* |00001111| <- "mask" after the right shift by 8-fb = 2 bits
* |11110000| <- "mask" after bitwise not.
* +--------+
*
* Now we can mask it with b+1 to clear the old bits, and bitwise-OR
* with "val" left-shifted by "rs" bits to set the new value.
*/
/* Note: if we access the last counter, we will also access the b+1 byte
* that is out of the array, but sds strings always have an implicit null
* term, so the byte exists, and we can skip the conditional (or the need
* to allocate 1 byte more explicitly). */
/* Store the value of the register at position 'regnum' into variable 'target'.
* 'p' is an array of unsigned bytes. */
#define HLL_GET_REGISTER(target,p,regnum) do { \
2014-03-28 07:15:39 -04:00
uint8_t *_p = (uint8_t*) p; \
unsigned long _byte = regnum*REDIS_HLL_BITS/8; \
unsigned long _fb = regnum*REDIS_HLL_BITS&7; \
unsigned long _fb8 = 8 - _fb; \
unsigned long b0 = _p[_byte]; \
unsigned long b1 = _p[_byte+1]; \
target = ((b0 >> _fb) | (b1 << _fb8)) & REDIS_HLL_REGISTER_MAX; \
} while(0)
/* Set the value of the register at position 'regnum' to 'val'.
* 'p' is an array of unsigned bytes. */
#define HLL_SET_REGISTER(p,regnum,val) do { \
2014-03-28 07:15:39 -04:00
uint8_t *_p = (uint8_t*) p; \
unsigned long _byte = regnum*REDIS_HLL_BITS/8; \
unsigned long _fb = regnum*REDIS_HLL_BITS&7; \
unsigned long _fb8 = 8 - _fb; \
unsigned long _v = val; \
_p[_byte] &= ~(REDIS_HLL_REGISTER_MAX << _fb); \
_p[_byte] |= _v << _fb; \
_p[_byte+1] &= ~(REDIS_HLL_REGISTER_MAX >> _fb8); \
_p[_byte+1] |= _v >> _fb8; \
} while(0)
/* ========================= HyperLogLog algorithm ========================= */
/* Our hash function is MurmurHash2, 64 bit version.
* It was modified for Redis in order to provide the same result in
* big and little endian archs (endian neutral). */
2014-03-28 11:24:35 -04:00
uint64_t MurmurHash64A (const void * key, int len, unsigned int seed) {
const uint64_t m = 0xc6a4a7935bd1e995;
const int r = 47;
uint64_t h = seed ^ (len * m);
const uint8_t *data = (const uint8_t *)key;
const uint8_t *end = data + (len-(len&7));
2014-03-28 11:24:35 -04:00
while(data != end) {
uint64_t k;
#if (BYTE_ORDER == LITTLE_ENDIAN)
k = *((uint64_t*)data);
#else
k = (uint64_t) data[0];
k |= (uint64_t) data[1] << 8;
k |= (uint64_t) data[2] << 16;
k |= (uint64_t) data[3] << 24;
k |= (uint64_t) data[4] << 32;
k |= (uint64_t) data[5] << 40;
k |= (uint64_t) data[6] << 48;
k |= (uint64_t) data[7] << 56;
#endif
2014-03-28 11:24:35 -04:00
k *= m;
k ^= k >> r;
k *= m;
h ^= k;
h *= m;
data += 8;
2014-03-28 11:24:35 -04:00
}
switch(len & 7) {
case 7: h ^= (uint64_t)data[6] << 48;
case 6: h ^= (uint64_t)data[5] << 40;
case 5: h ^= (uint64_t)data[4] << 32;
case 4: h ^= (uint64_t)data[3] << 24;
case 3: h ^= (uint64_t)data[2] << 16;
case 2: h ^= (uint64_t)data[1] << 8;
case 1: h ^= (uint64_t)data[0];
2014-03-28 11:24:35 -04:00
h *= m;
};
h ^= h >> r;
h *= m;
h ^= h >> r;
return h;
}
/* "Add" the element in the hyperloglog data structure.
* Actually nothing is added, but the max 0 pattern counter of the subset
* the element belongs to is incremented if needed.
*
* 'registers' is expected to have room for REDIS_HLL_REGISTERS plus an
* additional byte on the right. This requirement is met by sds strings
* automatically since they are implicitly null terminated.
*
* The function always succeed, however if as a result of the operation
* the approximated cardinality changed, 1 is returned. Otherwise 0
* is returned. */
2014-03-28 11:24:35 -04:00
int hllAdd(uint8_t *registers, unsigned char *ele, size_t elesize) {
uint64_t hash, bit, index;
uint8_t oldcount, count;
/* Count the number of zeroes starting from bit REDIS_HLL_REGISTERS
* (that is a power of two corresponding to the first bit we don't use
* as index). The max run can be 64-P+1 bits.
*
* Note that the final "1" ending the sequence of zeroes must be
* included in the count, so if we find "001" the count is 3, and
* the smallest count possible is no zeroes at all, just a 1 bit
* at the first position, that is a count of 1.
*
* This may sound like inefficient, but actually in the average case
* there are high probabilities to find a 1 after a few iterations. */
2014-03-28 11:24:35 -04:00
hash = MurmurHash64A(ele,elesize,0);
hash |= ((uint64_t)1<<63); /* Make sure the loop terminates. */
bit = REDIS_HLL_REGISTERS; /* First bit not used to address the register. */
count = 1; /* Initialized to 1 since we count the "00000...1" pattern. */
while((hash & bit) == 0) {
count++;
bit <<= 1;
}
2014-03-28 11:24:35 -04:00
/* Update the register if this element produced a longer run of zeroes. */
index = hash & REDIS_HLL_P_MASK; /* Index a register inside registers. */
HLL_GET_REGISTER(oldcount,registers,index);
if (count > oldcount) {
HLL_SET_REGISTER(registers,index,count);
return 1;
} else {
return 0;
}
}
2014-03-28 12:37:18 -04:00
/* Return the approximated cardinality of the set based on the armonic
* mean of the registers values. */
uint64_t hllCount(uint8_t *registers) {
double m = REDIS_HLL_REGISTERS;
double alpha = 0.7213/(1+1.079/m);
double E = 0;
2014-03-28 12:37:18 -04:00
int ez = 0; /* Number of registers equal to 0. */
int j;
/* We precompute 2^(-reg[j]) in a small table in order to
* speedup the computation of SUM(2^-register[0..i]). */
static int initialized = 0;
static double PE[64];
if (!initialized) {
PE[0] = 1; /* 2^(-reg[j]) is 1 when m is 0. */
for (j = 1; j < 64; j++) {
/* 2^(-reg[j]) is the same as 1/2^reg[j]. */
PE[j] = 1.0/(1ULL << j);
}
initialized = 1;
}
/* Compute SUM(2^-register[0..i]).
* Redis default is to use 16384 registers 6 bits each. The code works
* with other values by modifying the defines, but for our target value
* we take a faster path with unrolled loops. */
if (REDIS_HLL_REGISTERS == 16384 && REDIS_HLL_BITS == 6) {
uint8_t *r = registers;
unsigned long r0, r1, r2, r3, r4, r5, r6, r7, r8, r9,
r10, r11, r12, r13, r14, r15;
for (j = 0; j < 1024; j++) {
/* Handle 16 registers per iteration. */
r0 = r[0] & 63; if (r0 == 0) ez++;
r1 = (r[0] >> 6 | r[1] << 2) & 63; if (r1 == 0) ez++;
r2 = (r[1] >> 4 | r[2] << 4) & 63; if (r2 == 0) ez++;
r3 = (r[2] >> 2) & 63; if (r3 == 0) ez++;
r4 = r[3] & 63; if (r4 == 0) ez++;
r5 = (r[3] >> 6 | r[4] << 2) & 63; if (r5 == 0) ez++;
r6 = (r[4] >> 4 | r[5] << 4) & 63; if (r6 == 0) ez++;
r7 = (r[5] >> 2) & 63; if (r7 == 0) ez++;
r8 = r[6] & 63; if (r8 == 0) ez++;
r9 = (r[6] >> 6 | r[7] << 2) & 63; if (r9 == 0) ez++;
r10 = (r[7] >> 4 | r[8] << 4) & 63; if (r10 == 0) ez++;
r11 = (r[8] >> 2) & 63; if (r11 == 0) ez++;
r12 = r[9] & 63; if (r12 == 0) ez++;
r13 = (r[9] >> 6 | r[10] << 2) & 63; if (r13 == 0) ez++;
r14 = (r[10] >> 4 | r[11] << 4) & 63; if (r14 == 0) ez++;
r15 = (r[11] >> 2) & 63; if (r15 == 0) ez++;
2014-03-28 12:37:18 -04:00
/* Additional parens will allow the compiler to optimize the
* code more with a loss of precision that is not very relevant
* here (floating point math is not commutative!). */
E += (PE[r0] + PE[r1]) + (PE[r2] + PE[r3]) + (PE[r4] + PE[r5]) +
(PE[r6] + PE[r7]) + (PE[r8] + PE[r9]) + (PE[r10] + PE[r11]) +
(PE[r12] + PE[r13]) + (PE[r14] + PE[r15]);
r += 12;
}
} else {
for (j = 0; j < REDIS_HLL_REGISTERS; j++) {
unsigned long reg;
HLL_GET_REGISTER(reg,registers,j);
if (reg == 0) {
ez++;
E += 1; /* 2^(-reg[j]) is 1 when m is 0. */
} else {
E += PE[reg]; /* Precomputed 2^(-reg[j]). */
}
2014-03-28 12:37:18 -04:00
}
}
/* Muliply the inverse of E for alpha_m * m^2 to have the raw estimate. */
E = (1/E)*alpha*m*m;
/* Use the LINEARCOUNTING algorithm for small cardinalities.
* For larger values but up to 72000 HyperLogLog raw approximation is
* used since linear counting error starts to increase. However HyperLogLog
* shows a strong bias in the range 2.5*16384 - 72000, so we try to
* compensate for it. */
if (E < m*2.5 && ez != 0) {
2014-03-28 12:37:18 -04:00
E = m*log(m/ez); /* LINEARCOUNTING() */
} else if (m == 16384 && E < 72000) {
/* We did polynomial regression of the bias for this range, this
* way we can compute the bias for a given cardinality and correct
* according to it. Only apply the correction for P=14 that's what
* we use and the value the correction was verified with. */
double bias = 5.9119*1.0e-18*(E*E*E*E)
-1.4253*1.0e-12*(E*E*E)+
1.2940*1.0e-7*(E*E)
-5.2921*1.0e-3*E+
83.3216;
E -= E*(bias/100);
2014-03-28 12:37:18 -04:00
}
/* We don't apply the correction for E > 1/30 of 2^32 since we use
* a 64 bit function and 6 bit counters. To apply the correction for
* 1/30 of 2^64 is not needed since it would require a huge set
* to approach such a value. */
return (uint64_t) E;
}
/* ========================== HyperLogLog commands ========================== */
/* An HyperLogLog object is a string with space for 16k 6-bit integers,
* a cached 64 bit cardinality value, and a 4 byte "magic" and additional
* 4 bytes for version reserved for future use. */
robj *createHLLObject(void) {
robj *o;
char *p;
/* Create a string of the right size filled with zero bytes.
* Note that the cached cardinality is set to 0 as a side effect
* that is exactly the cardinality of an empty HLL. */
o = createObject(REDIS_STRING,sdsnewlen(NULL,REDIS_HLL_SIZE));
p = o->ptr;
memcpy(p+REDIS_HLL_SIZE-8,"HYLL",4);
return o;
}
/* Check if the object is a String of REDIS_HLL_SIZE bytes.
* Return REDIS_OK if this is true, otherwise reply to the client
* with an error and return REDIS_ERR. */
int isHLLObjectOrReply(redisClient *c, robj *o) {
/* Key exists, check type */
if (checkType(c,o,REDIS_STRING))
return REDIS_ERR; /* Error already sent. */
/* If this is a string representing an HLL, the size should match
* exactly. */
if (stringObjectLen(o) != REDIS_HLL_SIZE) {
addReplySds(c,
sdsnew("-WRONGTYPE Key is not a valid "
"HyperLogLog string value.\r\n"));
return REDIS_ERR;
}
return REDIS_OK;
}
/* PFADD var ele ele ele ... ele => :0 or :1 */
void pfaddCommand(redisClient *c) {
2014-03-28 11:24:35 -04:00
robj *o = lookupKeyWrite(c->db,c->argv[1]);
uint8_t *registers;
int updated = 0, j;
if (o == NULL) {
/* Create the key with a string value of the exact length to
* hold our HLL data structure. sdsnewlen() when NULL is passed
* is guaranteed to return bytes initialized to zero. */
o = createHLLObject();
2014-03-28 11:24:35 -04:00
dbAdd(c->db,c->argv[1],o);
updated++;
2014-03-28 11:24:35 -04:00
} else {
if (isHLLObjectOrReply(c,o) != REDIS_OK) return;
o = dbUnshareStringValue(c->db,c->argv[1],o);
2014-03-28 11:24:35 -04:00
}
/* Perform the low level ADD operation for every element. */
2014-03-28 12:37:18 -04:00
registers = o->ptr;
2014-03-28 11:24:35 -04:00
for (j = 2; j < c->argc; j++) {
if (hllAdd(registers, (unsigned char*)c->argv[j]->ptr,
sdslen(c->argv[j]->ptr)))
{
updated++;
}
}
if (updated) {
signalModifiedKey(c->db,c->argv[1]);
notifyKeyspaceEvent(REDIS_NOTIFY_STRING,"pfadd",c->argv[1],c->db->id);
2014-03-28 11:24:35 -04:00
server.dirty++;
/* Invalidate the cached cardinality. */
registers[REDIS_HLL_SIZE-9] |= (1<<7);
2014-03-28 11:24:35 -04:00
}
addReply(c, updated ? shared.cone : shared.czero);
}
/* PFCOUNT var -> approximated cardinality of set. */
void pfcountCommand(redisClient *c) {
2014-03-28 12:37:18 -04:00
robj *o = lookupKeyRead(c->db,c->argv[1]);
uint8_t *registers;
uint64_t card;
2014-03-28 12:37:18 -04:00
if (o == NULL) {
/* No key? Cardinality is zero since no element was added, otherwise
* we would have a key as HLLADD creates it as a side effect. */
2014-03-28 12:37:18 -04:00
addReply(c,shared.czero);
} else {
if (isHLLObjectOrReply(c,o) != REDIS_OK) return;
/* Check if the cached cardinality is valid. */
2014-03-28 12:37:18 -04:00
registers = o->ptr;
if ((registers[REDIS_HLL_SIZE-9] & (1<<7)) == 0) {
/* Just return the cached value. */
card = (uint64_t)registers[REDIS_HLL_SIZE-16];
card |= (uint64_t)registers[REDIS_HLL_SIZE-15] << 8;
card |= (uint64_t)registers[REDIS_HLL_SIZE-14] << 16;
card |= (uint64_t)registers[REDIS_HLL_SIZE-13] << 24;
card |= (uint64_t)registers[REDIS_HLL_SIZE-12] << 32;
card |= (uint64_t)registers[REDIS_HLL_SIZE-11] << 40;
card |= (uint64_t)registers[REDIS_HLL_SIZE-10] << 48;
card |= (uint64_t)registers[REDIS_HLL_SIZE-9] << 56;
} else {
/* Recompute it and update the cached value. */
o = dbUnshareStringValue(c->db,c->argv[1],o);
registers = o->ptr;
card = hllCount(registers);
registers[REDIS_HLL_SIZE-16] = card & 0xff;
registers[REDIS_HLL_SIZE-15] = (card >> 8) & 0xff;
registers[REDIS_HLL_SIZE-14] = (card >> 16) & 0xff;
registers[REDIS_HLL_SIZE-13] = (card >> 24) & 0xff;
registers[REDIS_HLL_SIZE-12] = (card >> 32) & 0xff;
registers[REDIS_HLL_SIZE-11] = (card >> 40) & 0xff;
registers[REDIS_HLL_SIZE-10] = (card >> 48) & 0xff;
registers[REDIS_HLL_SIZE-9] = (card >> 56) & 0xff;
/* This is not considered a read-only command even if the
* data structure is not modified, since the cached value
* may be modified and given that the HLL is a Redis string
* we need to propagate the change. */
signalModifiedKey(c->db,c->argv[1]);
server.dirty++;
}
addReplyLongLong(c,card);
2014-03-28 12:37:18 -04:00
}
}
/* PFMERGE dest src1 src2 src3 ... srcN => OK */
void pfmergeCommand(redisClient *c) {
uint8_t max[REDIS_HLL_REGISTERS];
uint8_t *registers;
int j, i;
/* Compute an HLL with M[i] = MAX(M[i]_j).
* We we the maximum into the max array of registers. We'll write
* it to the target variable later. */
memset(max,0,sizeof(max));
for (j = 1; j < c->argc; j++) {
uint8_t val;
/* Check type and size. */
robj *o = lookupKeyRead(c->db,c->argv[j]);
if (o == NULL) continue; /* Assume empty HLL for non existing var. */
if (isHLLObjectOrReply(c,o) != REDIS_OK) return;
/* Merge with this HLL with our 'max' HHL by setting max[i]
* to MAX(max[i],hll[i]). */
registers = o->ptr;
for (i = 0; i < REDIS_HLL_REGISTERS; i++) {
HLL_GET_REGISTER(val,registers,i);
if (val > max[i]) max[i] = val;
}
}
/* Create / unshare the destination key's value if needed. */
robj *o = lookupKeyRead(c->db,c->argv[1]);
if (o == NULL) {
/* Create the key with a string value of the exact length to
* hold our HLL data structure. sdsnewlen() when NULL is passed
* is guaranteed to return bytes initialized to zero. */
o = createHLLObject();
dbAdd(c->db,c->argv[1],o);
} else {
/* If key exists we are sure it's of the right type/size
* since we checked when merging the different HLLs, so we
* don't check again. */
o = dbUnshareStringValue(c->db,c->argv[1],o);
}
/* Write the resulting HLL to the destination HLL registers and
* invalidate the cached value. */
registers = o->ptr;
for (j = 0; j < REDIS_HLL_REGISTERS; j++) {
HLL_SET_REGISTER(registers,j,max[j]);
}
registers[REDIS_HLL_SIZE-9] |= (1<<7);
signalModifiedKey(c->db,c->argv[1]);
/* We generate an HLLADD event for HLLMERGE for semantical simplicity
* since in theory this is a mass-add of elements. */
notifyKeyspaceEvent(REDIS_NOTIFY_STRING,"pfadd",c->argv[1],c->db->id);
server.dirty++;
addReply(c,shared.ok);
}
/* ========================== Testing / Debugging ========================== */
/* PFSELFTEST
* This command performs a self-test of the HLL registers implementation.
* Something that is not easy to test from within the outside. */
#define REDIS_HLL_TEST_CYCLES 1000
void pfselftestCommand(redisClient *c) {
int j, i;
sds bitcounters = sdsnewlen(NULL,REDIS_HLL_SIZE);
uint8_t bytecounters[REDIS_HLL_REGISTERS];
/* Test 1: access registers.
* The test is conceived to test that the different counters of our data
* structure are accessible and that setting their values both result in
* the correct value to be retained and not affect adjacent values. */
for (j = 0; j < REDIS_HLL_TEST_CYCLES; j++) {
/* Set the HLL counters and an array of unsigned byes of the
* same size to the same set of random values. */
for (i = 0; i < REDIS_HLL_REGISTERS; i++) {
unsigned int r = rand() & REDIS_HLL_REGISTER_MAX;
bytecounters[i] = r;
HLL_SET_REGISTER(bitcounters,i,r);
}
/* Check that we are able to retrieve the same values. */
for (i = 0; i < REDIS_HLL_REGISTERS; i++) {
unsigned int val;
HLL_GET_REGISTER(val,bitcounters,i);
if (val != bytecounters[i]) {
addReplyErrorFormat(c,
"TESTFAILED Register %d should be %d but is %d",
i, (int) bytecounters[i], (int) val);
goto cleanup;
}
}
}
/* Test 2: approximation error.
* The test is adds unique elements and check that the estimated value
* is always reasonable bounds.
*
* We check that the error is smaller than 4 times than the expected
* standard error, to make it very unlikely for the test to fail because
* of a "bad" run. */
memset(bitcounters,0,REDIS_HLL_SIZE);
double relerr = 1.04/sqrt(REDIS_HLL_REGISTERS);
int64_t checkpoint = 1000;
uint64_t seed = (uint64_t)rand() | (uint64_t)rand() << 32;
uint64_t ele;
for (j = 1; j <= 10000000; j++) {
ele = j ^ seed;
hllAdd((uint8_t*)bitcounters,(unsigned char*)&ele,sizeof(ele));
if (j == checkpoint) {
int64_t abserr = checkpoint-
(int64_t)hllCount((uint8_t*)bitcounters);
if (abserr < 0) abserr = -abserr;
if (abserr > (uint64_t)(relerr*4*checkpoint)) {
addReplyErrorFormat(c,
"TESTFAILED Too big error. card:%llu abserr:%llu",
(unsigned long long) checkpoint,
(unsigned long long) abserr);
goto cleanup;
}
checkpoint *= 10;
}
}
/* Success! */
addReply(c,shared.ok);
cleanup:
sdsfree(bitcounters);
}
/* PFGETREG
* Return the registers values of the specified HLL. */
void pfgetregCommand(redisClient *c) {
robj *o = lookupKeyRead(c->db,c->argv[1]);
uint8_t *registers;
int j;
if (o == NULL) {
addReplyError(c,"The specified key does not exist");
return;
} else {
if (isHLLObjectOrReply(c,o) != REDIS_OK) return;
registers = o->ptr;
addReplyMultiBulkLen(c,REDIS_HLL_REGISTERS);
for (j = 0; j < REDIS_HLL_REGISTERS; j++) {
uint8_t val;
HLL_GET_REGISTER(val,registers,j);
addReplyLongLong(c,val);
}
}
}